Worksheet 13: Series

Due at the beginning of class on the day of Test 2

Direction: Solve the problems in this worksheet on separate sheets of paper. Write your solution neatly. Use standard size paper. Clearly label each problem, and include each problem in the correct order. No ragged edges. Staple multiple pages. At the top of the first page put your name, Math 2414, and the title of the worksheet. Show all work to justify your answer. Answer with insufficient work will receive no credit.

]	Prol	blem 1	l: Fi	nd j	part	tial	sun	ns							Problem 1: Find partial sums														
]	Find	the se	quen	ce o	f pa	rtial	sun	ns S	I_1, S	$_2,\ldots$	$., S_{\epsilon}$	of	the	seri	\mathbf{es}														
		∞ .														∞ /	1	<i>n</i> _1											
	1.	$\sum \frac{1}{2^n}$	\overline{i}												2.	$\sum \frac{1}{2}$	$\frac{-1}{n}$												
		n=1 2													1	i=1	-10	•											

Problem 2: Geometric series																														
Find	$1 ext{ the}$	coi	nmc	n ra	atio	and	det	ermi	ine '	whet	her	the	geo	met	ric s	\mathbf{eries}	s cor	iver	ges (or d	iver	ges.	Rev	vrite	e usi	ng s	umi	nati	on	
nota	tion	. If	the	seri	es co	onve	rges	, fin	d tł	ne su	ım.																			
1	0	6	9	27	7											∞														
1	. 0-	- 0 -	$\overline{2}$	8	+ +										3.	\sum_{-1}^{2}	(0.9)	$)^{n-1}$	_											
	∞		1.07													∞	n													
2	. ∑	$\overline{)}_{\overline{-}}$	$\frac{10^{n}}{(0)^{n}}$	-1											4.	$\sum \frac{1}{3}$	$\frac{\pi^n}{n+1}$													
	n =	1	9)												r	$=0^{-6}$														

Problem 3: Telescoping series																													
Find	a fo	rmu	la f	or tl	$\mathbf{n} = \mathbf{n}$	nth	par	tial	sun	1 of	the	serie	es ar	ıd u	se it	to d	leter	min	e wł	neth	er tl	he sei	ries	con	verg	ses o	r div	verge	es.
If it	conv	verge	es, f	ind	the	sum																							
	~~		4								∞	(1)		1 / (\mathbf{i}				•	° (
1.	$\sum_{n=1}^{n}$	$\frac{1}{n}$	<i>i</i> +	$\overline{2)}$						2.	$\sum_{n=1}$	(e^{i})	<i>n</i> _	$e^{1/(}$	<i>n</i> +1))			93	3. <u>}</u>	_(a	rctan	n(n)	+1) — 8	arcta	an(n)))	
	n-	1									10-1										-1								

Problem 4: nt	Problem 4: nth-term test														
Explain why the	given series diverges														
∞ 2			∞												
1. $\sum \frac{n^2 - 1}{4n^2 + 1}$			$2. \sum 1$	$\ln\left(\frac{n}{3n+1}\right)$											
n=1			n=1												

Problem 5: Properties of se	ies	
Find the sum of the series		
	∞ , t , an	
1. $\sum_{n=1}^{\infty} \left(\frac{1}{e^n} + \frac{1}{n(n+1)} \right)$	$2. \sum \frac{1+2^n}{3^n}$	

Problem 6: Make a series converge																												
Find	all	valu	ies c	of x	for [.]	whic	h th	ie se	ries	\cos	verg	es.	The	n wi	rite	the	sum	of	the s	serie	s as	a fi	ınct	ion	of x			
	∞														c	∞												
1.	\sum	(x)	-1)	n											2.	$\sum (\cdot$	$(-1)^{n}$	x^{2n}										
	n =	1													n	=1												