Due at the beginning of class on the day of Test 3

Direction: Solve the problems in this worksheet on separate sheets of paper. Write your solution neatly. Use standard size paper. Clearly label each problem, and include each problem in the correct order. No ragged edges. Staple multiple pages. At the top of the first page put your name, Math 2414, and the title of the worksheet. Show all work to justify your answer. Answer with insufficient work will receive no credit.

Pro	bler	n 1:	Us	sing	; the	e in	teg	ral ⁻	test																					
Expl	ain	why	r th	e in	tegra	al te	est a	can	be	appl	ied	to [.]	$_{\mathrm{the}}$	serie	s. ′	Ther	i ap	ply	the	test	to	dete	ermi	ine '	whet	ther	the	ser	ies	
conv	erge	s or	div	erge	s.																									
	∞		2													∞	-	1												
1.	$\sum_{n=1}^{\infty}$	$\frac{1}{3n}$	+5												3.	$\sum_{i=1}^{n} \overline{(}$	2n -	$+3)^{3}$	3											
	-11-	1														∞														
2.	1	$+\frac{2}{-}$; + -	} - +		- -	n	+ +							4.	$\sum \frac{1}{2}$	1													
	4	7	' 1	2 '		n	2+3	3							1	$n = 2^{-9}$	t√Π	17												

Problem 2: Using the integral test																												
Expl	ain	why	the	int	$_{ m egra}$	l tes	st ca	nno	t be	app	olied	to	$_{\mathrm{the}}$	serie	es to	o det	erm	ine	\cos	verge	ence	or	dive	rger	ice			
	∞	(1) n													∞	20			Ũ				Ū				
1.	Σ] ($\frac{1}{n}^{n}$												2.	$\sum \frac{1}{2}$	$\cos^2(1 +)$	$\frac{n}{n^2}$										
	n =	1	v												n	=1	± ' '	v										

Prob	Problem 3: Using the <i>p</i> -series test																					
Deter	mine wheth	er the se	eries conv	erges	or di	iverges																
	∞ ,										1		1	-	1		1					
1.	$\sum \frac{1}{n\sqrt{2}}$								2. 1	$+\frac{1}{2}$	$\frac{1}{2\sqrt{2}}$	$+\frac{1}{3}$	$\frac{1}{\sqrt{3}}$	$+\frac{1}{4}$	/4	$+\frac{1}{5}$	$\frac{1}{\sqrt{5}}$	+	•			
	$n=1$ $n \rightarrow -$																					

Problem 4: Remainder Estimate for the integral test (Optional Extra Credit Problem

							∞																						
1.	Su	ppo	se th	at t	he s	eries	\sum	a_n	conv	erge	es to	the	real	nur	nber	` <i>s</i> . '	Гhe	Ntł	1 Re	ema	ind	er is	s the	qua	ntit	y R	N =	s-2	S_N
	wh	ere	S_N :	is th	ie su	m o	$\int_{n=1}^{n=1}$	e firs	st N	ter	ms c	of th	e se	ries.	If a	$z_n =$	f(r	i), tl	hen	we ł	nave	the	foll	owir	ıg lo	wer	and	upp	ber
	po.	und	s for	the	Nt	h r	ema	ind	er		$\int_{-\infty}^{\infty}$, ,		,	D	,	\int_{0}^{∞}	<i>c</i> ()	,										
											\int_{N}	_1 -1	(x)d	$x \leq$	R_N	$\leq \int$	$_N$	f(x)	dx.										
	C			1		∇^{∞}	1	1	:_h			h	1					TT	+ b -a	. 1			1:4		C.	1 17		1. 41	
	Co	nsio	ler t	ne s	erie	$\sum_{n=1}^{s}$	$\frac{1}{1}n^{4}$	WI	lich	conv	verg	es b	y th	e <i>p</i> -	serie	este	st.	Use	tne	abc	ove i	neq	Jant	y ic) 11110		suc	II UI	lat
	R_N	$V \leq V$	0.00	1.																									
2.	If v	we a	.dd	S_N 1	to b	oth	side	s of	the	inec	quali	ty i	n th	e pr	evio	us p	part,	we	get										
										a	ſ	∞	f(m)	da		< C		\int_{0}^{∞}	f) da									
									k	\mathcal{P}_N -	J_N	$_{7+1}$	f(x)	$ax \geq$	$\geq s \geq$	$\geq \mathcal{O}_{I}$	v +	\int_{N}	J(x	Jax									
	Th	is g	ives	us	lowe	r bo	ound	l an	d up	per	bou	ınd	for	the	sum	s 0	f th	e se	ries.	Pl	ıg t	he v	alue	e of	N in	n th	e pr	evic	ous
	pa	rt in	$ h\epsilon$	ab	ove	ineq	uali	tv to	o ob	tain	esti	mat	es f	or tl	ne si	ım o	of th	ie se	ries	$\sum_{n=1}^{\infty}$	1								
	1																			n=1	n^4								