Due at the beginning of class on the day of Test 3

Direction: Solve the problems in this worksheet on separate sheets of paper. Write your solution neatly. Use standard size paper. Clearly label each problem, and include each problem in the correct order. No ragged edges. Staple multiple pages. At the top of the first page put your name, Math 2414, and the title of the worksheet. Show all work to justify your answer. Answer with insufficient work will receive no credit.

Problem 1: Using direct comparison test - compare with geometric series																					
Det	ermine w	hether	the s	series o	onve	rges	or	diver	ges												
	∞ .	<i>n</i>											∞	0.0							
1	$\sum \frac{4}{5n}$	- ⁿ + 3										2.	$\sum \frac{1}{2}$	$\frac{3^n}{2^n}$	1						
	n=1 0	+ 9										r	i=1 ⁴		1						

Problem 2: Using direct comparison test - compare with p -series											
Determine whether the	series converges or diverges										
∞ 1											
1. $\sum \frac{1}{2n-1}$	2. $\sum \frac{1}{\sqrt{m^3 + 1}}$ 3. $\sum \frac{1}{\sqrt{m^3 - 1}}$										
n=1 $2n-1$	$n=1 \vee n + 1 \qquad n=1 \vee n - 1$										

Problem 3: Using limit comparison test											
Determine whether the series converges or dive	rges										
× 2 2 1	∞ on 1										
1. $\sum \frac{2n^2 - 1}{3n^5 + 2n + 1}$	4. $\sum \frac{2^{n}+1}{5^{n}+1}$										
$2.\sum_{n=1}^{\infty} \frac{1}{n}$	5. $\sum_{i=1}^{\infty} \sin\left(\left \frac{1}{-}\right \right)$										
$\sum_{n=1}^{\infty} n\sqrt{n^2+1}$	$\sum_{n=1}^{\infty} \langle n \rangle$										
$2 \sum_{n=1}^{\infty} n$	$e \sum_{n=1}^{\infty} e^{1/n}$										
$\int \sum_{n=1}^{3} \frac{2}{(n+1)2^{n-1}}$	$0.2 \sum_{n=1}^{\infty} n$										

Problem 4: Optional Extra Credit Problem

If the limit in the lim	nit comparison test	is zero or infinity, t	he test is still applicable in	some cases.
In particular, suppos	se that $\sum a_n$ and \sum	$\sum b_n$ are series with	positive terms. If the series	$s \sum b_n$ is convergent, and the
$\lim_{n \to \infty} \lim_{n \to \infty} \frac{a_n}{b_n} = 0, \text{ th}$	hen the series $\sum a_r$, must be convergen	t. On the other hand, if the	e series $\sum b_n$ is divergent and
the limit $\lim_{n\to\infty} \frac{a_n}{b_n} = 1$	∞ , then the series	$\sum a_n$ must be diver	gent. Use these facts to sho	w that the series
$\sum_{n=1}^{\infty} \ln n$			$\sum_{n=1}^{\infty} \ln n$	
1. $\sum_{n=1}^{\infty} \frac{n}{n^3}$ conver	ges.		2. $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.	
<i>n</i> _1			11-1	