Due at the beginning of class on the day of Test 3

Direction: Solve the problems in this worksheet on separate sheets of paper. Write your solution neatly. Use standard size paper. Clearly label each problem, and include each problem in the correct order. No ragged edges. Staple multiple pages. At the top of the first page put your name, Math 2414, and the title of the worksheet. Show all work to justify your answer. Answer with insufficient work will receive no credit.

Pro	Problem 1: Using the ratio test														
Dete	rmine whether th	series converges absolutely or diverges.													
	∞ on														
1.	$\sum \frac{9^n}{n^5}$	2. $\sum \frac{(n!)^2}{(3n)!}$ 3. $\sum \frac{(-1)^{n+1}n!}{1 \cdot 3 \cdot 5 \cdot (2n+1)}$													
	n=1 "	n=1 (3n)													

Problem 2: Using the root test														
Determine whether the series converges	absolutely or diverges.													
∞ (2 , 2) n	∞ (1)m	∞ (1 1) n												
1. $\sum \left(\frac{3n+2}{n+3}\right)$	2. $\sum \frac{(-1)^n}{(\ln n)^n}$ 3	$\cdot \sum \left(\frac{1}{n} - \frac{1}{n^2} \right)$												
n=1	n=1 (mn)													

Problem 3: Make a series converge																								
	∞	(-1)	n(r -	$\lfloor 1 \rangle^n$											∞	17	$\cdot n$							
1.	\sum_{i}	(1	$\frac{n}{n}$		-									2.	$\sum_{n} n$	$l! \left(\frac{a}{2}\right)$)							
	n=1													n	=0									

	Problem 4: Recursively defined series																														
r	The	terr	ns o	f th	e sei	ies		a 9	re d	efine	ed re	eur	sive	v as	fol	lows	D	ateri	mine	wh	ethe	or th		ries	con	vero	es o	r di	vero	es	
	1 110	0011	15 0.			-	_`	x_n c			Ju IV	ccur	51701	y ar	, 101	10 10 10	. D	00011			CUIR	JI UI	10 50	1105	con	VCIE	0 00	i ui	1018	00.	
	1.	a_1	= 2	$, a_{n}$	+1 =	$\frac{5n}{4n}$	+1 + 1	a_n								2. a	$z_1 =$	1, a	n+1	$=\frac{2}{-}$	+c	$\frac{1}{n}$	a_n								
						410															V	11									