Due at the beginning of class on the day of Test 1

Direction: Solve the problems in this worksheet on separate sheets of paper. Write your solution neatly. Use standard size paper. Clearly label each problem, and include each problem in the correct order. No ragged edges. Staple multiple pages. At the top of the first page put your name, Math 2414, and the title of the worksheet. Show all work to justify your answer. Answer with insufficient work will receive no credit.

Problem 1: Apply the shell method-revolve about y -axis																									
Find	the	vol	ume	of	the	solic	l for	meċ	by	revo	olvir	ıg tl	he re	gior	ı ab	out	$_{\mathrm{the}}$	y-az	cis						
1	21 -	- e ⁻	x^2		0 r	- 0	r	- 1	Ĭ			Ŭ						Ŭ							
1.	9	2	,,	_	0, a	2	, a	- 1.																	
2.	<i>y</i> =	= x-	, y =	= 41	z - z	¢																			

Problem 2: Apply the shell method-revolve about <i>x</i> -axis																									
Find	the	vol	ume	of	the	solic	l for	med	l by	revo	olvir	ıg tl	ne re	gioi	ı ab	out	the	<i>x</i> -az	xis						
1	r =	= 4 -	- (11	_ ?	2 ,	r = 0	n																		
1.	æ		(9		, .	,	-1)	2																	
2.	<i>x</i> -	- y =	= 3,	<i>x</i> =	4 -	$(y \cdot$	- 1)	٠.																	

	Problem 3: Revolving about a horizontal line or vertical line																										
-	Find	the	vol	ume	of	the	solic	l for	med	l by	revo	olvii	ng ti	ne re	gior	ı ab	out	the	give	n lii	ne						
	1	11 =	= 3r	-r	2 1		r^2 al	hout	the	lin	$\mathbf{e} r$	= 2															
	1.	9	2		, g		1	, in																			
	2.	<i>x</i> =	= y²	+1	$, x \in$	= 2	abo	ut ti	he li	ne y	- = -	-2															

Problem 4: Applicaction

					-																										
r	Γ he	folle	win	ig ta	ble	reco	rds	$_{\mathrm{the}}$	dept	th. 1	mea	sure	ed ev	erv	25ft	. of	a ci	rcul	lar p	ond	wit	h di	$\operatorname{am}\epsilon$	ter	4001	ft. (Fror	n La	arsoi	ı's	
(calcı	lus)).						Ť	,						,															
								x		0		25	50	75	1	00	12	5	150	17	75	200	7								
								de	$_{\rm pth}$	2	0	19	19	17	1	.5	14		10	6		0									
	1	IJa			h:n		aula	ton		nd				from	+:		£ (~) 4	bot		Jala	th a	date								F
		US	ea,	grap	mué	g ca	CUIE	uor	UO II	na	a qi	laur	auc	rune	:0101	1 <i>y</i> =	= J (x) (Inat	moc	ieis	une	data	i							F
	-2.	Set	t up	the	inte	gra	l an	d us	e th	e in	tegr	atio	n ca	pabi	lity	of t	he c	alcı	ulate	er to	fine	1 th	e vo	lum	e of	the	pon	d.			
																															-
												y																			-
										_																					┝
											2	0+						1													_
											1	6^{8}																			
											1 5 1	$\frac{4}{2}$																			
										_ 2		$\frac{1}{0}$ -					/	i.													
												$\frac{8}{6}$																			
												4 - 2						i.													
																-			► x												
													5	50	100	15	50	200													
													Dis	tanc	e fro	om c	ente	r													
																															E