Due at the beginning of class on the day of Test 1

Direction: Solve the problems in this worksheet on separate sheets of paper. Write your solution neatly. Use standard size paper. Clearly label each problem, and include each problem in the correct order. No ragged edges. Staple multiple pages. At the top of the first page put your name, Math 2414, and the title of the worksheet. Show all work to justify your answer. Answer with insufficient work will receive no credit.

Problem 1: Find arc length	
Find the arc length of the given function over the given interval	
1. $y = \frac{2}{3}x^{3/2} + 1$ over [0, 1].	
$2 y = \ln(\sin(x)) \text{ over } [\frac{\pi}{2}, \frac{3\pi}{2}]$	
2. $y = \ln(\sin(x))$ over $[\frac{\pi}{4}, \frac{3\pi}{4}]$.	

Pr	oble	m 2:	Fi	nd ar	c le	eng	\mathbf{th}																
Fin	nd th	e arc	len	gth of	f the	e gi	ven	func	etio	n ov	er t	he g	giver	int	erva	1							
	1 r	$= \frac{1}{2}$	u^2 +	$(-2)^{3/2}$	$\frac{2}{2}$ ov	er ($) < \eta$	<	4														
	1. <i>w</i>	3	9 '					9 _	1.														
	2. x	$=\frac{y^2}{6}$	$+\frac{1}{2}$	$\frac{1}{y}$ ove	r 1	$\leq y$	$r \leq 2$	2.															

1	Prol	bler	n 3:	A	opli	cati	on																							
r	Γ he	equ	atio	n																										
											y =	10($e^{x/2}$	• +	$e^{-x/}$	$^{20}),$	-20	$\leq x$	$c \leq 1$	20										
										ween		wei	s th	at a	re 4	0 m	eters	s ap	art.	Fin	d th	ie ai	c le	ngtl	n of	the	cab	le be	etwe	en
1	he t	wo	towe	ers.	(froi	m L	arso	n's	cal	culus).																			
															<i>y</i> <															
												•		30	Î.		Δ													
																-			-											
														10		_														
												Æ	\$ <u> </u>	\vdash	++	_	Æ	₩ >	- <i>x</i>											
												-20) -1	0		10	20													
											1																			