Due at the beginning of class on the day of Test 1

Direction: Solve the problems in this worksheet on separate sheets of paper. Write your solution neatly. Use standard size paper. Clearly label each problem, and include each problem in the correct order. No ragged edges. Staple multiple pages. At the top of the first page put your name, Math 2320, and the title of the homework assignment. Show all work to justify your answer. Answer with insufficient work will receive no credit.

Problem 1: Solving an	exact equation
Verify that the equation is	exact and find a 1-parameter family of solutions of the equation
1. $(2x-1)dx + (3y+7)dx$	$\frac{1}{y^2} = \frac{1}{y^2} $
2. $(2xy^2 - 3)dx + (2x^2)dx$	4. $\left(ye^{xy} - \frac{1}{2}\right)dx + \left(xe^{xy} + \frac{x}{2}\right)dy = 0.$
2. (2xy - 3)ax + (2xy)	(-y)

Problem 2: Solving an IVP	
Verify that the equation is exact and solve the initial value problem	
$1. (y^{2} \cos x - 3x^{2}y - 2x)dx + (2y \sin x - x^{3} + \ln y)dy = 0, y(0) = e$	
2. $(e^x y + xe^x y)dx + (xe^x + 2)dy = 0, y(0) = -1$	

Pro	blen	n 3:	: No	nex	act	\mathbf{eq}	uat	ion	s m	ade	e exa	ıct																	
Shov	v th	at th	ne di	ffere	entia	al ec	quat	ion	is n	ot e	exact	. Fi	nd a	an ir	itegi	atir	ig fa	ctor	to	mak	e it	exa	et.	Solve	$e ext{ the}$	e eq	uatic	m.	٦
	(0)																						`	0					
1.	(2y	ı" +	3x)a	dx +	$2x_i$	ydy	= 0								2. 3	cdx	+(x	$y^2y +$	-4y)dy =	= 0,	y(4) =	0.					J

Problem 4: Orthogonal trajectories

Consider the family of hyperpolas F(x,y) = xy = C where C is a parameter. The **orthogonal trajectories** of this family is the family of curves each of whose member is orthogonal (perpendicular) to every curve in the former family. Now, the slope at (x, y) for each curve in the family F(x, y) = xy = C is given by

 $\frac{dy}{dx}$

 ∂F

 $\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$

Hence, the the slope for each curve in the orthogonal trajectories must be

$$\frac{dy}{dx} = rac{\partial y}{\partial F}$$
 (negative reciprocal).

Rearrange the above equation, it follows that the curves in the orthogonal trajectories must satisfy the equation

$$\frac{\partial F}{\partial y}dx - \frac{\partial F}{\partial x}dy = 0$$

Fine	l the	par	tial	der	ivati	ives	∂F	∂x	and	∂F	∂u	of t	he f	unct	ion	F(x	(, u)	= x	$u {\rm an}$	d p	lug ·	then	n int	to tl	he a	bove	e eau	iatio	on.
The																	,,,		9	~ I	0						1		
1 ne	ц soi	ve u	ne e	qua	01011	101	una	a 1-	para	ame	ter i	ann	iy O	I SOI	uuo	ns.													
You	r sol	utio	n wi	ll b	e th	e or	thog	ona	l tra	ject	orie	$_{\rm s}$ of	the	fam	ily o	of hy	per	bola	s F	(x, y)) =	xy :	= C						
							-			-					Ť	ĩ	-				<i>`</i>	Ť							