
Power Series Solutions of Linear Differential Equations

Review of Power Series

A power series centered at the point x0 is an infinite series of the form

∞∑
n=0

an(x− x0)n = a0 + a1(x− x0) + a2(x− x0)2 + . . . ,

where x is a variable and the an are real numbers called the coefficients of the series. Throughout this lecture, we
assume the center is 0, i.e., x0 = 0. A power series centered at 0 takes the form

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + . . . .

The power series representation for some familiar functions are:

ex =

∞∑
n=0

xn

n!
= 1 + x +

x2

2!
+

x3

3!
+ . . .

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
= x− x3

3!
+

x5

5!
+ . . .

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
= 1− x2

2!
+

x4

4!
+ . . .

We say that a power series

∞∑
n=0

anx
n converges at a real number, say x = 2 if when we replace x by 2, the infinite

series of real number

∞∑
n=0

an2n converges. Every power series has an interval of convergence which is the set of all

real numbers x for which the series converges. The interval of convergence of a power series

∞∑
n=0

anx
n is an interval

center at 0, i.e., an interval of the form (−R,R) for some R ≥ 0 (R is called the radius of convergence). The
radius of convergence R can be infinite, in which case the interval of convergence is (−∞,∞).
When a power series converges for every x in an interval (−R,R), it defines a function whose domain is the same
interval. The interval of convergence of each of the three series above is (−∞,∞). If we plug a specific real number,

say x = 2 into the first series, then the value of the series

∞∑
n=0

2n

n!
= 1 + 2 +

4

2!
+

8

3!
+ . . . approaches the value of e2

as more terms are included in the series.
The solutions of many differential equations, especially those with variable coefficients, cannot be expressed explicitly
or implicitly in terms of elementary functions. In these situations, we seek series solutions to the equation, that is,
we assume a solution in the form of an infinite series and proceed in a way similar to the method of undetermined
coefficients to find a pattern of the coefficients an of the series. Before we study this technique, we need to review
some basic operations with infinite series.
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Example 1: Shifting the index of summation

The symbol sigma in the power series notation

∞∑
n=0

anx
n denotes summation and n denotes the index of summation,

which serves as a counter. In many situations, before we can combine two or more summations as a single summation,
we need to reindex or shift the index of summation. In the following examples, we will shift the index of summation
such that the generic term of the power series involves xn instead of xn+2 or xn−2.

1.

∞∑
n=0

xn+2

n!
2.

∞∑
n=2

n(n− 1)anx
n−2.

Solution

1. Let k = n + 2. When n = 0, k = 2. Also, n = k − 2. So the series becomes

∞∑
k=2

xk

(k − 2)!
.

Since the index of summation is a dummy parameter, we rename the k in the above expression to n and rewrite
it as

∞∑
n=2

xn

(n− 2)!
,

which is a series whose generic term involves xn instead of xn+2. One can easily check that this series is
equivalent to the original series by writing out a few terms and observe that they are exactly the same for both
series:

Original series:

∞∑
n=0

xn+2

n!
= x2 +

x3

1!
+

x4

2!
+

x5

3!
+ . . . (Note that 0! = 1)

Reindexed series:

∞∑
n=2

xn

(n− 2)!
= x2 +

x3

1!
+

x4

2!
+

x5

3!
+ . . .

Note that when we work with infinite series, the upper limit of summation is not affected by the shifting process
because it always remains infinity.

2. Let k = n− 2. When n = 2, k = 0. Also, n = k + 2 and n− 1 = k + 1. So the series becomes

∞∑
k=0

(k + 2)(k + 1)ak+2x
k.

Rename the k to n, we get a series which is equivalent to the original series and whose generic terms involves
xn instead of xn−2:

∞∑
n=0

(n + 2)(n + 1)an+2x
n.

Example 2: Shifting indices to verify an equality

Show that x2
∞∑

n=0

n(n + 1)anx
n =

∞∑
n=2

(n− 2)(n− 1)an−2x
n.



Solution

Take the x2 inside the summation on the left hand side and multiply x2 and xn, we obtain

x2
∞∑

n=0

n(n + 1)anx
n =

∞∑
n=0

n(n + 1)anx
n+2.

Let k = n + 2. When n = 0, k = 2. Also, n = k − 2, n + 1 = k − 1. We then have

∞∑
n=0

n(n + 1)anx
n+2 =

∞∑
k=2

(k − 2)(k − 1)ak−2x
k =

∞∑
n=2

(n− 2)(n− 1)an−2x
n = Right hand side,

where in the last step we rename the index of summation from k to n

Example 3: Adding power series

Combine the power series into a single power series whose generic term involves xn

1.

∞∑
n=1

nanx
n−1 + 2

∞∑
n=0

anx
n+1 2. 2

∞∑
n=0

anx
n+1 +

∞∑
n=1

nbnx
n−1

Solution

1. We will perform shifting of indices on both series (set k = n− 1 for the first and set k = n + 1 for the second)
and combine them:

∞∑
n=1

nanx
n−1 + 2

∞∑
n=0

anx
n+1 =

∞∑
k=0

(k + 1)ak+1x
k +

∞∑
k=1

2ak−1x
k

= 1 · a1 · x0 +

∞∑
k=1

(k + 1)ak+1x
k +

∞∑
k=1

2ak−1x
k

= a1 +

∞∑
k=1

(
(k + 1)ak+1x

k + 2ak−1x
k
)

= a1 +

∞∑
k=1

((k + 1)ak+1 + 2ak−1)xk

= a1 +

∞∑
n=1

((n + 1)an+1 + 2an−1)xn.

Note that in the first equality, we cannot combine the two series because one starts at k = 0 whereas the other
one starts at k = 1. In the second equality, we write the first term of the first series outside the summation
notation which makes both series start at k = 1. This allows us to combine them in the next step.

2. Use the same strategy as above, we have

2

∞∑
n=0

anx
n+1 +

∞∑
n=1

nbnx
n−1 =

∞∑
k=1

2ak−1x
k +

∑
k=0

(k + 1)bk+1x
k

=

∞∑
k=1

2ak−1x
k + b1 +

∑
k=1

(k + 1)bk+1x
k = b1 +

∞∑
k=1

(2ak−1 + (k + 1)bk+1)xk

= b1 +

∞∑
n=1

(2an−1 + (n + 1)bn+1)xn.



Example 4: Obtain a recurrence relation from an identity

Show that the identity
∞∑

n=1

nanx
n−1 + 2

∞∑
n=0

anx
n+1 = 0

implies that a1 = 0 and an+1 = − 2

n + 1
an−1 for each n ≥ 1.

Solution

In Example 3, we added the two power series on the left hand side of this identity into a single power series. Using
this result, the identity is equivalent to

a1 +

∞∑
n=1

((n + 1)an+1 + 2an−1)xn = 0.

Thus, we have a power series that sums to zero. The only way for this to hold is when each of its coefficients equals
zero. It follows that

a1 = 0 and (n + 1)an+1 + 2an−1 = 0, for n ≥ 1.

Getting an+1 by itself in the second equation gives rise to the recurrence relation

an+1 = − 2

n + 1
an−1, for n ≥ 1.

This helps us determine an+1 in terms of an−1 for n = 1, 2, 3, . . . .

Derivatives of Power Series

If a power series

∞∑
n=0

anx
n converges on the interval (−R,R) where R > 0, then it defines a differentiable function f(x)

on (−R,R). The power series for the derivatives of f can be found by the process of term-by-term differentiation.

More specifically, if f(x) =

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + . . . , then

f ′(x) = a1 + 2a2x + 3a3x
2 + 4a4x

3 + · · · =
∞∑

n=1

annx
n−1 and

f ′′(x) = 2a2 + 6a3x
2 + 12a4x

2 + · · · =
∞∑

n=2

ann(n− 1)xn−2.

Note that the index of summation starts at n = 1 for the series that represents f ′ and at n = 2 for the one that
represents f ′′.

Example 5: Verify a series solution

Verify that the power series y =

∞∑
n=0

(−1)n+1

n
xn is a solution of the equation

(x + 1)y′′ + y′ = 0.



Solution

We have

y′ =

∞∑
n=1

(−1)n+1

n
nxn−1 =

∞∑
n=1

(−1)n+1xn−1

y′′ =

∞∑
n=2

(−1)n+1

n
n(n− 1)xn−2 =

∞∑
n=2

(−1)n+1(n− 1)xn−2.

Substitute these into the differential equation, we have

(x + 1)y′′ + y′ = (x + 1)

∞∑
n=2

(−1)n+1(n− 1)xn−2 +

∞∑
n=1

(−1)n+1xn−1

=

∞∑
n=2

(−1)n+1(n− 1)xn−1 +

∞∑
n=2

(−1)n+1(n− 1)xn−2 +

∞∑
n=1

(−1)n+1xn−1

=

∞∑
k=1

(−1)k+2kxk +

∞∑
k=0

(−1)k+3(k + 1)xk +

∞∑
k=0

(−1)k+2xk

=

∞∑
k=1

(−1)kkxk +

∞∑
k=0

(−1)
(
(−1)k(k + 1)xk

)
+

∞∑
k=0

(−1)kxk

=

∞∑
k=1

(−1)kkxk −
∞∑
k=0

(−1)kkxk −
∞∑
k=0

(−1)kxk +

∞∑
k=0

(−1)kxk

=

∞∑
k=1

(−1)kkxk − 0−
∞∑
k=1

(−1)kkxk = 0.

Series Solutions of Differential Equations

To apply the method of power series solution to solve the equation a2(x)y′′ + a1(x)y′ + a0(x)y = 0, we assume that
the equation has a series solution (within the scope of this lecture, we also assume the series is centered at 0) of the

form y =

∞∑
n=0

anx
n. Substitute this series (and its derivatives) into the given equation, combine series and argue that

the coefficients of powers of x must be zero. This gives rise to a recurrence relation among the coefficients an of the
series solution.

Example 6: Power Series Solution

Solve the differential equation y′′ + y = 0 assuming a power series solution centered at 0

Solution

Note that we can easily solve this equation by using the characteristic equation and obtain the general solution
y = c1 cosx + c2 sinx. Let’s see how the method of series solution works here.

We begin by assuming a power series solution of the form y =

∞∑
n=0

anx
n. Take the derivatives of y, we get

y′ =

∞∑
n=1

nanx
n−1 and y′′ =

∞∑
n=2

n(n− 1)anx
n−2.



Solution

Substitute y′′ and y to the equation, and combine the series, we have

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n = 0

∞∑
k=0

(k + 2)(k + 1)an+2x
k +

∞∑
n=0

anx
n = 0 (Shift the first index)

∞∑
n=0

(n + 2)(n + 1)an+2x
n +

∞∑
n=0

anx
n = 0 (Rename the first index)

∞∑
n=0

((n + 2)(n + 1)an+2 + an)xn = 0 (Combine the two series)

In the last equation, we have power series that sums to zero. The only way for this to hold is when each of its
coefficients equals zero. It follows that

(n + 2)(n + 1)an+2 + an for each n ≥ 0.

We then obtain the recurrence relation

an+2 = − an
(n + 2)(n + 1)

, for n ≥ 0.

Plug in a few values of the index n, we have

n = 0 : a2 = −a0
2

n = 1 : a3 = − a1
3 · 2

= −a1
3!

n = 2 : a4 = − a2
4 · 3

=
a0

2 · 3 · 4
=

a0
4!

n = 3 : a5 = − a3
5 · 4

=
a1

2 · 3 · 4 · 5
=

a1
5!

n = 4 : a6 = − a4
6 · 5

= − a0
(4!)(5)(6)

= −a0
6!

n = 5 : a7 = − a5
7 · 6

= − a1
(5!)(6)(7)

= −a1
7!

and so on.

It follows that the solution to the equation is

y =

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + . . .

= a0 + a1x−
a0
2!
x2 − a1

3!
x3 +

a0
4!
x4 +

a1
5!
x5 − a0

6!
x6 − a1

7!
x7 + . . .

= a0

1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + . . .︸ ︷︷ ︸

y1

+ a1

x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + . . .︸ ︷︷ ︸

y2


Thus, the solution y is a combination y = a0y1 + a1y2 where y1 and y2 are functions with series representation

y1 = 1− 1

2!
x2 +

1

4!
x4 − 1

6!
x6 + . . . and y2 = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7 + . . .

Observe that these are the series representations for the functions cosx and sinx, respectively. So, y1 = cosx and
y2 = sinx. And the solution to the equation is y = a0 cosx + a1 sinx which is what we expect. Since there are no
initial conditions, a0 and a1 play the role of the arbitrary constants.

Example 7: Power Series Solution - Airy’s equation

Solve the differential equation y′′ + xy = 0 assuming a power series solution centered at 0



Solution

Assume a power series solution of the form y =

∞∑
n=0

anx
n. Take the derivatives of y, we get

y′ =

∞∑
n=1

nanx
n−1 and y′′ =

∞∑
n=2

n(n− 1)anx
n−2.

Substitute y′′ and y to the equation, and combine the series, we have

0 = y′′ + xy =

∞∑
n=2

n(n− 1)anx
n−2 + x

∞∑
n=0

anx
n

=

∞∑
n=2

n(n− 1)anx
n−2 +

∞∑
n=0

anx
n+1 (Take the x inside second series)

=

∞∑
k=0

(k + 2)(k + 1)ak+2x
k +

∞∑
k=1

ak−1x
k (Shift the indices)

=

∞∑
n=0

(n + 2)(n + 1)an+2x
n +

∞∑
n=1

an−1x
n (Rename the indices)

= 2 · 1 · a2 · x0 +

∞∑
n=1

(n + 2)(n + 1)an+2x
n +

∞∑
n=1

an−1x
n (Pull out first term of first series)

= 2a2 +

∞∑
n=1

((n + 2)(n + 1)an+2 + an−1)xn

Since the last series sums to 0, we must have a2 = 0 and (n + 2)(n + 1)an+2 + an−1 = 0 for n ≥ 1. This gives rise to
the recurrence relation

an+2 = − an−1
(n + 1)(n + 2)

, for n ≥ 1.

Plug in a few values of the index n, we have

n = 1 : a3 = − a0
2 · 3

n = 2 : a4 = − a1
3 · 4

n = 3 : a5 = − a2
4 · 5

= 0

n = 4 : a6 = − a3
5 · 6

=
a0

2 · 3 · 5 · 6
n = 5 : a7 = − a4

6 · 7
=

a1
3 · 4 · 6 · 7

n = 6 : a8 = − a5
7 · 8

= 0 and so on.

It follows that the solution to the equation is

y =

∞∑
n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + a4x

4 + a5x
5 + a6x

6 + a7x
7 + a8x

8 . . .

= a0 + a1x + 0− a0
2 · 3

x3 − a1
3 · 4

x4 + 0 +
a0

2 · 3 · 5 · 6
x6 +

a1
3 · 4 · 6 · 7

x7 + 0 + . . .

= a0

1− 1

2 · 3
x3 +

1

2 · 3 · 5 · 6
x6 − . . .︸ ︷︷ ︸

y1

+ a1

x− 1

3 · 4
x4 +

1

3 · 4 · 6 · 7
x7 − . . .︸ ︷︷ ︸

y2


Thus, the general solution y is a combination y = a0y1 + a1y2 where we have the first few terms of the power series
representation of y1 and y2 above. The functions y1 and y2 are not elementary functions but we can use the process
to generate as many terms of the series representations of them as we’d like.


