Definition of the Laplace Transform

Review of Improper Integrals

Let f(x) be a continuous function on the interval $[0,\infty)$, the improper integral $\int_0^\infty f(x)dx$ is defined as

$$\int_0^\infty f(x)dx = \lim_{b \to \infty} \int_0^b f(x)dx$$

If the limit exists, we say that the integral **converges**; otherwise, we say that the integral **diverges**.

Exa	mple	e 1:	Εv	alu	iate	Im	pro	\mathbf{per}	Int	\mathbf{egr}	als																
Dete	rmin	e w	het	ner	the	inte	gral	con	verg	es o	r di	verg	es. 1	Eva	luate	e the	e int	egra	l if	it co	onve	rges	•				
	r∞)	1													c^{∞}	1	Ū									
1.		1	$\frac{1}{x}$	dx											2.		$\frac{1}{1+}$	$\frac{1}{x^2}d$	x								
	00															0											

Laplace Transform

Let f(x) be a function defined on the interval $[0, \infty)$. The **Laplace transform** of f is a function F given by the formula

$$F(s) = \mathscr{L}{f(x)} = \int_0^\infty e^{-sx} f(x) dx.$$

The domain of the function F(s) is all the values of s for which the integral converges. The Laplace transform of f is denoted by both F and $\mathscr{L}{f}$. The Laplace transform is an operator which takes a function f (in the variable x) and transform into another function F (in the variable s). This is an example of an integral operator.

Example 2: Find the Laplace transform of a function by definition			
Find the Laplace transform of the constant function $f(x) = 1, x > 0$.			

	Solu	itio	n																											
]	By d	lefin	itioı	ı of	$_{\mathrm{the}}$	Lap	lace	tra	nsfo	rm,	we	have	2																	
													c	∞					cb											
									F(s) =	$\mathscr{L}\{$	1} =		e	sx.	1dx	$= \frac{1}{b}$	$\lim_{\to\infty}$		e^{-sx}	dx									
													1:		e^{-s}	$x \mid b$	1:		e ⁻	-sb	1									
												=	$b \rightarrow b \rightarrow b$	$m - \infty$	s		$= 11_{b-}$	$m_{\rightarrow\infty}$	[s	+ - s	·								
_			_												ah													1 _		
	for a	s >	0 an	ld fi:	xed,	the	exp	one	nt –	-sb i	s ne	gati	ve s	o <i>e</i> ⁻	-80 _	\rightarrow () as	b -	$\rightarrow \propto$	э. Н	ence	e, th	e la:	st li	mit	equ	als -	Т s	hus,	
													F(s)) =	1 - w	hen	s >	0.												
													`		s															
٦	Whe	$\mathrm{n}s$.	< 0,	we	have	e^{-s}	sb	$ ightarrow \infty$	\circ as	b -	$ ightarrow \infty$, so	$_{\mathrm{the}}$	inte	gral	dive	erges	3. W	Then	s =	0, t	he ii	nteg	ral	\int_{0}^{∞}	e^{-s}	^{x}dx	= [\hat{v}^{∞}	dx
(live	rges	as v	vell.) ₀			J_0)	
r	Гhu	s, th	e La	apla	ce ti	rans	forn	n of	f(x) =	1, x	≥ 0	is t	he f	unc	tion	F(s	s) =	$\frac{1}{-w}$	vith	$_{\mathrm{the}}$	don	nain	s >	0.					
									~ ``										s											

Example 3: Find the Laplace transform of a function by definition

1	. Le	t a 1	be a	\cos	stan	it. F	ind	the	Lap	lace	e tra	nsfo	orm	of tł	ne fi	inct	ion	f(x)	$) = \epsilon$	e^{ax} ,	$x \ge$	0.				
2	Пe		ur r	أربعه	t fro	m r	ort	1 to	obt	nin	QS	c^{5x}	l on	14	∫_ [−]	8xן		· 、 /								
2	. 05	c ye	ur i	cour	0 110	m þ	ar t	1 00	-001	am	æι	ر ۲		u L	1 ^c	.ر										

Solution	
1. By definition of the Laplace transform, we have	
$F(s) = \mathscr{L}\lbrace e^{ax}\rbrace = \int_0^{\infty} e^{-sx} e^{ax} dx = \int_0^{\infty} e^{-(s-a)x} dx$	
$= \lim_{x \to a} \int_{-a}^{b} e^{-(s-a)x} dx = \lim_{x \to a} \frac{-e^{-(s-a)x}}{a} \Big _{a}^{b}$	
$b \rightarrow \infty \int_0^{-\infty} \int_0^$	
$=\lim_{x \to \infty} \left[-\frac{e^{-(s-a)x}}{s} + \frac{1}{s} \right].$	
$b \rightarrow \infty \begin{bmatrix} s-a & s-a \end{bmatrix}$	
By the same reasoning as the previous example, the integral converges when $s - a > 0$ and it co	nverges to
$\frac{1}{s-a}$. The integral diverges when $s-a \leq 0$. Thus, the Laplace transform of $f(x) = e^{ax}$, $x \geq 0$ is the second	e function
$F(s) = \frac{1}{s-a}$ with the domain $s > a$.	
2. By part 1, we have $\mathscr{L}\lbrace e^{5x}\rbrace = \frac{1}{s-5}$ with domain $s > 5$. And $\mathscr{L}\lbrace e^{-8x}\rbrace = \frac{1}{s+8}$ with domain $s > -5$	3.

Exa	mp	le 4	: La	pla	ce t	ran	sfo	\mathbf{rm}	of a	ı pie	ecev	vise	e fur	ncti	on l	by d	lefiı	nitio	on						
Find	l the	e Laj	olace	e tra	ansfe	orm	of t	he f	unc	tion															
														(.	0										
												f(x)	= <		$0 \leq $	x <	< 2								
														(1	$x \ge$	2									

Solution

Since f(x) is defined by different formulas on different intervals, we need to break up the integral in the definition of the Laplace transform of f into different parts, we have

												_																			
					$\mathbf{F}(\mathbf{a})$		\int_{0}^{∞}	-5	sx f (a) da																					
					F(s)) =	\int_{0}	e	J (:	r)aa																					
						=	\int_{0}^{2}	e^{-sx}	dx -	+ [${}^{\infty}x$	e^{-sx}	dx																		
Γ							J_0	-sx	2	J_2	10	-sx	~		r ک ۱	b															
						=	$\frac{-e}{s}$		<u> </u>	$\lim_{b\to\infty}$	$\int \left(\frac{e}{-}\right)$	$\overline{s^2}$	$+\frac{x}{-}$	e	-)	2	(Int	egra	tion	by	par	ts fo	r th	e se	cond	l int	egra	al)			
							e	-2s	1	e^{-}	-2s	26	2^{-2s}		who	n															
						_	_	s ,	s		s^2	T -	s		wne	m s	>0														
Γ						=	1 +	$\frac{e^{-2}}{e^2}$	+	$\frac{e^{-2}}{e}$	-wh	ien <i>s</i>	s >	0.																	
		T .			0	a	3		a.											_ sh		,		0	(T)T	÷ .		- 1	、 、		
	1	Note	tha	it in	froi	m S	tep	3 to	Ste	р4,	we	have	e us	ed t	he fa	act 1	that	$\lim_{b\to 0}$. be⁻ ∘	=	= 0 -	whe	ns:	> 0	(L'I)	lopi	tal l	Rule	;).		
t									+	-				-	-	-	-													 	

Laplace Transforms of Basic Functions

Using the definition of the La	place transform, w	ve can obtain the Laplace transforms of	many basic functions.
	Function $f(x)$	Laplace Transform $F(s) = \mathscr{L}{f(x)}$	
	1	$\frac{1}{s}, s > 0$	
	e^{ax}	$\frac{1}{s-a}, \ s > a$	
	$x^n, n = 1, 2, \dots$	$\frac{n!}{s^{n+1}}, s > 0$	
	$\sin(bx)$	$\frac{b}{s^2+b^2}, s>0$	
	$\cos(bx)$	$\frac{s}{s^2+b^2}, s>0$	
	$\sinh(bx)$	$\frac{b}{s^2 - b^2}, \ s > b$	
	$\cosh(bx)$	$\frac{s}{s^2 - b^2}, s > b$	

Linearity of the Laplace Transform

If we know $\mathscr{L}{f(x)} = F(s)$ and $\mathscr{L}{g(x)} = G(s)$, then the Laplace transform of the function h(x) = 2f(x) + 3g(x)will be $\mathscr{L}{h(x)} = 2F(s) + 3G(s)$. More generally, if f and g are functions whose Laplace transforms exist for s > aand c_1 , c_2 are constants, then for s > a, we have

$$\mathscr{L}\lbrace c_1f(x) + c_2g(x)\rbrace = c_1\mathscr{L}\lbrace f(x)\rbrace + c_2\mathscr{L}\lbrace g(x)\rbrace.$$

This is called the linearity property of the Laplace transform. In other words, the Laplace transform is a **linear operator**.

Example 5: Find Lapl	ace Transforms of functions using Table and Linearity	
Use the table of basic La	place transforms and linearity property to find the Laplace transform of the function:	
1. $\mathscr{L}\{5 - e^{2x} + 6x^2\}$	2. $\mathscr{L}\{\cos(5x) + \sin(2x)\}$	

S	Solu	tio	n																									
	1.	For	r <i>s</i> >	> 2,	we .	have	,																					
								6	<i>p</i> (=	_2	x	62	h	= (0	(1)	a	2 [2	, x	e a	2 (س ²	า							
								2	- {ə	-e	+	0x	} =	3 <i>2</i> 1	{1}	-x	$\{e$	}+ {	- 0.2)	$\frac{1}{5}$	}.	1	19	>				
													=	$5 \cdot \frac{1}{\epsilon}$		s – 1	$\frac{1}{2}$ +	$6 \cdot \frac{2}{s}$	$\frac{1}{3^3} =$	$\frac{1}{s}$		- 2	$+\frac{12}{s^3}$	3.				
	0	Ð		0																								
	Ζ.	FO.	r <i>s ,</i>	> 0,	we .	nave																						
							L	$\{\cos$	(5x)	+s	in(2	$x)\}$	= 2	e{cc	os(53	$x)\}$ -	+ L	\sin	(2x))} =	-2	s	+	2	<u>_</u> .			
																					52	+25)	s= +	4			

Exam	ple 6: Fi	nd La	place 7	ransfor	ms of	function	ns using	g Table	and I	Linearity	7			
Use th	e table of	basic	Laplace	transform	ns and	linearity	propert	y to fine	d the L	aplace tr	ansform	of the	function	:
	606 — T							coc 2	2					
1	$\mathscr{L}\{e^{-x}\cos(\theta)\}$	h(x)					2	$\mathscr{E}\{\cos^2 i$	<i>x</i> }					

Solution
Before we find the Laplace transform, we need to rewrite these functions
1 We have:
$a^x + a^{-x}$
$\mathscr{L}\left\{e^{-x}\cosh(x)\right\} = \mathscr{L}\left\{e^{-x} \cdot \frac{e^{-x} \cdot e^{-x}}{2}\right\}$
$= \mathscr{Q} \left\{ \frac{1 + e^{-2x}}{1 + e^{-2x}} \right\} = \frac{1}{1} \left(\mathscr{Q} \{1\} + \mathscr{Q} \{e^{-2x}\} \right)$
$= \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right), \text{ for } s > 0.$
2. Using the trig identity $\cos^2 x = \frac{1 + \cos(2x)}{1 + \cos(2x)}$
$\mathscr{L}\{\cos^2 x\} = \mathscr{L}\{\frac{1+\cos(2x)}{2}\} = \frac{1}{2}\mathscr{L}\{1+\cos(2x)\}$
$= \frac{1}{2} \left(\mathscr{L}\{1\} + \mathscr{L}\{\cos(2x)\} \right) = \frac{1}{2} \left(\frac{1}{s} + \frac{1}{s^2 + 4} \right), \text{ for } s > 0.$