Inverse Laplace Transforms and Transforms of Derivatives

Inverse Laplace Transform

If $F(s) = \mathscr{L}{f(x)}$, then we say that f(x) is the **inverse Laplace transform** of F(s) and we write

$$f(x) = \mathscr{L}^{-1}\{F(s)\}.$$

In other words, the inverse Laplace transform of a function F is a function f whose Laplace transform equals to F. For example, from the previous lecture $\mathscr{L}\{1\} = \frac{1}{s}$. Hence, $\mathscr{L}^{-1}\left\{\frac{1}{s}\right\} = 1$. From the table of basic Laplace transforms, we can immediately obtain the table of basic inverse Laplace transforms:

$\mathscr{L}^{-1}\left\{\frac{n!}{s^{n+1}}\right\} = x^n, n = 1, 2, \dots$	$\mathscr{L}^{-1}\left\{\frac{1}{s-a}\right\} = e^{ax}$
$\mathscr{L}^{-1}\left\{\frac{b}{s^2+b^2}\right\} = \sin(bx)$	$\mathscr{L}^{-1}\left\{\frac{s}{s^2+b^2}\right\} = \cos(bx)$
$\mathscr{L}^{-1}\left\{\frac{b}{s^2-b^2}\right\} = \sinh(bx)$	$\mathscr{L}^{-1}\left\{\frac{s}{s^2-b^2}\right\} = \cosh(bx)$

The inverse Laplace transform is also a linear operator, that is,

$$\mathscr{L}^{-1}\{c_1F(s) + c_2G(s)\} = c_1\mathscr{L}^{-1}\{F(s)\} + c_2\mathscr{L}^{-1}\{G(s)\}.$$

Example 1: Find Inverse Transforms

		1	2)					1	(1)			co 1	ſ	s)				1	1)		
1.	Ľ	-1 {	$\overline{s^3}$	>		2.	. L	-1	$\left(\overline{s^5} \right)$	}		3. 2	\mathscr{U}^{-1}	$\left\{\frac{-}{s^2}\right\}$	² + 4	$\overline{4}$		4.	\mathscr{L}^{-}	- { -	$s^{2} +$	$\overline{7}$		

S	olu	tio	n																											
	1.	Fro	om 1	the i	form	ula	L-	$1\left\{ \right\}$	$\frac{n!}{s^{n+1}}$		<i>xⁿ</i>	, we	hav	ve L	<i>o</i> -1	$\left\{\frac{2}{s^3}\right.$	} =	x^2 .												
	2.	We	e ne	ed t	o m	atch	the	for	m ir	n the	bas	sic t	rans	form	n foi	rmul	la, s	o we	e nee	ed to	o rev	vrite	e the	e fur	nctio	on I	r(s).	We	e hav	<i>v</i> e
									L	²⁻¹ <	$\left(\frac{1}{s^5}\right)$	$\Big\} =$	\mathscr{L}^{-}	1	$\frac{1}{4!}$.	$\left.\frac{4!}{s^5}\right\}$	= -	$\frac{1}{4!}\mathcal{L}$	-1	$\left(\frac{4!}{s^5}\right)$	} =	$\frac{1}{24}a$	⁴ .							
		wh	ere	in t	he n	ext	to la	ast :	step	we	have	use	ed li	neai	ity	of tl	ne ir	ivers	e La	apla	ce tr	ans	forn	ì.						
	3.	Fre	om t	the i	form	ula	\mathscr{L}^-	$1\left\{ \right.$	$\frac{s}{s^2} +$	b^2	> = ($\cos($	bx),	we	have	e L	$^{-1}$	$\frac{s}{s^2}$	+ 4	$\rangle = \langle$	$\cos($	2x).								
			0			co_1	ſ	b	h		(1	`									•		0						-	
	4.	Τh	e fo	rmu	ila 🕹	ℓ^{-1}	$\left\{ \frac{1}{s^2} \right\}$	+l	$\frac{1}{2}$	= si	n(bx)	:) is	app	olica	ble.	We	do :	neec	l to	rewi	rite	the	func	tion	1 F'(s) fi	rst.	We	hav	e
											_						,	_ 、												
									Ĺ	p - 1	$\left\{ -\frac{1}{2} \right\}$	1	} =	$\frac{1}{\sqrt{2}}$	\mathscr{L}^{-}	$^{-1}$	$\frac{}{2}$	7) =	$\frac{1}{\sqrt{2}}$	$\sin(r$	$\sqrt{7}x$).							
											(<i>s</i> ²	+ 7	J	$\sqrt{2}$	7	l	<i>s</i> ² -	-7)		$\sqrt{7}$										

Example	e 2: Termwise	e divisio	n and	Linear	rity						
	(3s+1)										
Find \mathscr{L}^{-}	$\left\{ \overline{s^2+2} \right\}$.										

Solution		
We start by splitting up the expression and applying linearity:		
(3e+1) (3e 1)		
$\mathscr{L}^{-1}\left\{\frac{33}{s^{2}+2}\right\} = \mathscr{L}^{-1}\left\{\frac{33}{s^{2}+2} + \frac{1}{s^{2}+2}\right\}$		
$= 3\mathscr{L}^{-1}\left\{\frac{1}{s^2 + (\sqrt{2})^2}\right\} + \frac{1}{\sqrt{2}}\cdot \mathscr{L}^{-1}\left\{\frac{1}{s^2 + (\sqrt{2})^2}\right\}$	}	
$= 3\cos(\sqrt{2}r) + \frac{1}{2}\sin(\sqrt{2}r)$		
$-\frac{1}{\sqrt{2}}\cos(\sqrt{2}x) + \sqrt{2}\sin(\sqrt{2}x).$		

Examp	le 3: P	artial	Frac	tions w	ith	Distin	ct L	ine	ar F	acto	\mathbf{ors}						
	1 (-)			$6s^2 -$	13s	+2											
Find \mathscr{L}	$^{1}{F}$	where	F(s)	$= \frac{1}{s(s - s)}$	1)(s	-6)											

Sol	ıtio	n																											
We	begi	n by	fine	ling	$th\epsilon$	pai	rtial	frac	tior	n deo	com	posi	tion	of .	F(s)														
					,	1				c 2	1					л		0											
										$\frac{0s}{s(s)}$	-1 -1)	3s - (s -	$-\frac{2}{6}$	= -	++	$\frac{B}{s-}$	+	$\frac{C}{s}$ –	$\frac{1}{6}$.										
<u>с</u> .		1						1,	C			1.	c)						1			11 1	.1	"		1	,,	.1	1
to fi	e th nd A	е ас 1, <i>В</i>	nom and	1 C.	tor 1	sa	proc	iuct	01 (nsti	nct	iine	ar ia	acto.	rs, w	ve ca	an u	lse a	sno	rtcu	t ca	nea	tne	-"co	vere	a uj	p″ n	ietn	oa
				G	_2	19.) ,		1		e.	2	12.	1.9					6.2	11		2.		14				
			A :	$=\frac{0}{(s)}$	s – 1	$\frac{138}{1}(s)$	$\frac{3+2}{-6}$	$ _{s=}$	0 =	$\frac{1}{3}$,	<i>B</i> =	= -	s(s	-6	+2	s=1	= 1	l, C	2 =	$\frac{0s}{s}$	-1(s - 1)	$(1)^{s+1}$	$\frac{2}{ _{s=}}$	=6	$=\frac{14}{3}$	•			
Wo	horro			(/(-	,														(-								
vve	nave				2	10						. 、									、								
		Ĺ	p - 1	$\left\{ \frac{6}{6} \right\}$	s ² -	13s 1)(e	3 + 2	{	$=\frac{1}{3}$	\mathscr{L}^{-}	$1\left\{ -\frac{1}{2}\right\}$		$+ \mathcal{L}$	-1	$\frac{1}{e}$	$-\frac{1}{1}$	+ -	$\frac{4}{2}\mathcal{L}$	⁻¹ {	$\frac{1}{e}$	$-\frac{1}{6}$	= -	- 	$e^x +$	$\frac{14}{3}$	e^{6x} .			
				(३(s —	тдə	- 0	, ,	5		ر:	,,			3 –	ŦĴ		J		<u> </u>	U)	•	,		5				

Transforms of Derivatives

Our goal is to use the Laplace transform to solve linear differential equations. The first step is to study the effect of the Laplace transform on the derivatives of a function. If f(x) is a continuous function on $[0, \infty)$ and $\mathscr{L}{f(x)} = F(s)$, then

$$\mathscr{L}{f'(x)} = sF(s) - f(0).$$

More generally, we have

$$\mathscr{L}\lbrace f^{(n)}(x)\rbrace = s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0) - \dots - s f^{(n-2)}(0) - f^{(n-1)}(0).$$

Roughly speaking, these important formulas show that we can use the Laplace transform to replace *differentiation* with respect to x with multiplication by s. Hence, it can be used to convert a differential equation into an algebraic equation.

When we solve a differential equation, the unknown function is often denoted by y = y(x). Let $Y(s) = \mathscr{L}\{y\}$, the above formulas will become

$$\mathscr{L}\{y'\} = sY(s) - y(0).$$

 $\mathscr{L}\{y^{(n)}\} = s^n Y(s) - s^{n-1} y(0) - s^{n-2} y'(0) - \dots - s y^{(n-2)}(0) - y^{(n-1)}(0).$

Example 4: Solve a First-Order	IVP	
Use the Laplace transform to solve	he initial-value problem	
1. $y' + 2y = 0, y(0) = 2.$	2. $y' - y = 2\cos(5x), y(0) = 0$	

\mathbf{Solu}	tio	n		I						I			1																
1.	We	e firs	st ap	ply	the	Lap	lace	e tra	nsfo	\mathbf{rm}	to ł	ooth	side	s of	the	equ	atic	on, a	nd ı	ıse l	ineε	rity	to	obta	in				
											(d	$\ell\{y'$	'}+	$2\mathcal{L}$	$\{y\}$	= 2	$\ell\{0\}$	} = ().										
	Us	ing	the	prop	perty	7 of	Lap	lace	tra	nsfo	rm (of de	erive	tive	s, w	e hε	ave												
		0			·		1					εV	(s) -	- 11()) + `	2V	(s) -	- 0											
	,		T 7 ((0)		~ 1				. , .	1	(3)			21	(3) -	- 0,				,			T <i>T</i> (
	wh	ere	Y(s) =	\mathscr{L} {	y}.;	Subs	stitu	ite t	he 1	nitia	al cc	ndit	ion	y(0)	_= ;	2_int	to th	le eq	fuat	ion	and	ISO	ate	Y(s)), w€) ha	ve	
												sY((s) -	2+	$\cdot 2Y$	(s) :	= 0												
													(s +	2)Y	(s) :	= 2	2											
															Y	(s) :	$=\frac{1}{s}$	+2											
	Fir	nally	, to	obt	ain '	the s	solu	tion	<i>y</i> , 1	ve fi	nd	the	inve	rse I	Lapl	ace	trar	nsfor	m o	f $Y($	s).	We	hav	e					
										a. —	Q-	-1 (V	(0)		φ^{-1}	1	2	1_	- 90	-2x									
										y =	L	{1	(s)	} = .	L	$\left\{ \frac{1}{s} \right\}$	3 + 2	$2\int$	- 20	•									
	He	nce,	the	sol	utio	n to	the	IVI	P is	y =	$2e^{-}$	$\frac{2x}{\cdot}$																	
2.	Fo	llow	the	san	ne st	ateg	gy, v	ve h	ave																				
		L	$\{y'\}$	- ;	$\mathscr{L}\{y$	} =	$2\mathcal{L}$	$\{\cos$	s(5x))} (Ap	ply 1	the 1	Lapl	ace	trar	nsfor	m to	o bo	th s	ides	3)							
	sY	(s)	-y(0) –	-Y(s	3) =	2	ls	(A	Appl	v tł	ne La	apla	ce tr	ans	form	ı of	deri	vati	ves a	and	alsc	fin	d tra	ansf	ərm	of 2	$\cos($	(5x))
			Š	ئىر 0	Ì	, 	<i>s</i> ² -	+ 25					-																
			(s	- 1))Y(s	s) =	$\frac{2}{s^2}$	s + 25	-																				
					Y(s	s) =		1 20	2s		- (Solv	e fo	r <i>Y</i> (s))														
					- (-	,	(s -	- 1)	$(s^2 - $	+ 25) `			- (~//														
Now	we	need	l to	find	$1 ext{ the}$	e inv	erse	Laj	plac	e tra	nsf	orm	of I	r(s)	. We	e be	gin	by fi	ndiı	ng t	he p	arti	al fi	racti	ions	deco	omp	ositi	on
of Y	(s):								$\mathbf{V}(\cdot)$				2s			A		Bs	+ c	7									
									1 (8	;) =	$(s \cdot$	- 1)	$(s^2 -$	+ 25)	<u>s</u> –	1^{+}	s^2	+25	 5									
Solv€	e for	• the	coe	effici	ents	A,	<i>В</i> а	nd (С, ч	ze ha	ave	A =	1/1	3, B	· = ·	-1/	13, (C =	25/	13.	It fo	ollov	vs tl	nat					
			\mathscr{L}^{-}	${}^{1}{Y}$	(s)	=.	\mathscr{L}^{-1}	{_		2s			} =	\mathscr{L}^{-}	1 { _	1.	1		1		s	- +	$\frac{25}{12}$		1	}			
							1	(,	s – . (1)(s	² +	25) 1)	ſ	ر ـ ج	13	$\frac{s-2}{2}$	1 5 1	13	s²	+ 2) 	13 13	<i>S</i> ² ·	+25	J			
						= -	$\frac{1}{13}\mathcal{L}$	0-1	$\left\{\frac{-}{s}\right\}$	-1	> —	$\frac{1}{13}$	ℓ^{-1}	$\left\{\frac{1}{s^2}\right\}$	+2	$\left[\frac{1}{5}\right]$	$+\frac{-}{1}$	$\frac{1}{3} \cdot \frac{1}{5}$	\mathcal{L}^{-}		s^2 +	- 25	}						
						= -	$\frac{1}{13}e^{x}$	-	$\frac{1}{13}$ c	os(5	$x) \dashv$	$\frac{5}{19}$	$\sin($	5x).															
Henc	e t	he s	olut	ion	to ti	he T	vp (s	10			19																	
FIGH	, 0	10.5	Siut	1011	00 01		• • •						1		1			5											
								<i>y</i> =	£	$^{-1}{}$	Y(s))} =	$\frac{1}{13}$	2 ^x –	$\frac{1}{13}$	$\cos($	5x)	$+\frac{5}{13}$	$\frac{1}{3}\sin^2$	(5x)).								

The steps for solving an IVP using Laplace Transform are:

- 1. Take the Laplace transform of both sides of the equation.
- 2. Use the properties of the Laplace transform and the initial conditions to obtain an algebraic equation. Solve this equation for $Y(s) = \mathscr{L}\{y\}$.
- 3. Find the inverse Laplace transform $\mathscr{L}^{-1}{Y(s)}$. This gives the solution y to the IVP.

Example 5: Solve a Second-Order IVP

Use	the	Lap	lace	trai	nsfo	rm t	o sc	lve	the	initi	al-v	alue	pro	bler	n									
										1.9.		9	10	$_{2}2x$	(D`			(0)	1					
									y	+ əį	/ +	<i>29</i> =	= 12	е,	y(0)) = 1	x, y ((0) =	 1.					

Solution
Apply the method of Laplace transform, we have
$\mathscr{L}\{y''\} + 3\mathscr{L}\{y'\} + 2\mathscr{L}\{y\} = 12\mathscr{L}\{e^{2x}\} \text{ (Apply the Laplace transform to both sides)}$
$s^{2}Y(s) - s \underbrace{y(0)}_{y(0)} - \underbrace{y'(0)}_{y'(0)} + 3sY(s) - 3 \underbrace{y(0)}_{y(0)} + 2Y(s) = \frac{12}{s-2} $ (Transform of derivatives and find transform of $12e^{2x}$)
$\frac{1}{(s^2 + 3s + 2)Y(s) - s + 1 - 3} = \frac{12}{s - 2}$
$(s+1)(s+2)Y(s) = \frac{12}{s-2} + s + 2 = \frac{s^2 + 8}{s-2}$
$Y(s) = \frac{s^2 + 8}{(s-2)(s+1)(s+2)}$
To find the inverse Laplace transform of $Y(s)$, we first use the "covered up" method to find the partial fraction decomposition of $Y(s)$
$Y(s) = \frac{s^2 + 8}{(s-2)(s+1)(s+2)} = \frac{A}{s-2} + \frac{B}{s+1} + \frac{C}{s+2}$
where $s^2 + 8$ $s^2 + 8$ $s^2 + 8$
$A = \frac{A}{(s+1)(s+2)}\Big _{s=2} = 1, B = \frac{A}{(s-2)(s+2)}\Big _{s=-1} = -3, C = \frac{A}{(s-2)(s+1)}\Big _{s=-2} = 3.$
Hence,
$\mathscr{L}^{-1}\{Y(s)\} = \mathscr{L}^{-1}\left\{\frac{1}{s-2}\right\} - 3\mathscr{L}^{-1}\left\{\frac{1}{s+1}\right\} + 3\mathscr{L}^{-1}\left\{\frac{1}{s+2}\right\} = e^{2x} - 3e^{-x} + 3e^{-2x}.$
Therefore, the solution of the IVP is
$y = \mathscr{L}^{-1}\{Y(s)\} = e^{2x} - 3e^{-x} + 3e^{-2x}.$