Operational Properties of the Laplace Transform - I

Translation in \boldsymbol{s}

Translation in s **property:** If $\mathscr{L}{f(x)} = F(s)$ and a is any real number then,

$$\mathscr{L}\{e^{ax}f(x)\} = F(s-a).$$

This says that to find the Laplace transform of e^{ax} times a function, we just need to replace each of the s in the Laplace transform of that function by s - a. We can add the following formulas to the table of basic Laplace transforms:

Function $f(x)$	Laplace Transform $F(s) = \mathscr{L}{f(x)}$
$e^{ax}x^n, n=1,2,\ldots$	$\frac{n!}{(s-a)^{n+1}}, s > a$
$e^{ax}\sin(bx)$	$\frac{b}{(s-a)^2+b^2}, s > a$
$e^{ax}\cos(bx)$	$\frac{s-a}{(s-a)^2+b^2}, s > a$

Inverse Form of Translation in s property: If $f(x) = \mathscr{L}^{-1}{F(s)}$, then

$$\mathscr{L}^{-1}\{F(s-a)\} = e^{ax}f(x).$$

Example 1: Find Laplace transformer	rms using the translation in s property	
Find the Laplace transform		
		$x \rightarrow \gamma$
1. $\mathscr{L}\left\{e^{-2x}\cos(4x)\right\}$	2. $\mathscr{L} \left\{ e^{3x} \left(9 - 4x + 10 \sin \frac{1}{2} \right) \right\}$	$\overline{2}$)}·

	Solu	itior	ı															
-	Writ	e th	e so	lutio	on h	ere												

Example 2: Find inverse Laplace t	transforms using the translation in s property	
Find the inverse Laplace transforms:		
	$(2x^2 + 10x)$ $(5x^2 + 10x)$	
1. $\mathscr{L}^{-1}\left\{\frac{1}{(s-1)^4}\right\}$	2. $\mathscr{L}^{-1}\left\{\frac{2s+10s}{(s^2-2s+5)(s+1)}\right\}$ 3. $\mathscr{L}^{-1}\left\{\frac{3s}{(s-2)^2}\right\}$.	
$((3-1)^r)$	$((s^{-} + 2s + 3)(s + 1))$	+

	Solu	itio	n															
-	Writ	e th	e so	lutio	on h	ere												

Example 3: Solve an IVP by using the Laplace transform	
1. $y'' - 4y' + 4y = x^3 e^{2x}$ $y(0) = y'(0) = 0$	
$2 x'' - 2 x' + 5 x - 2 x^{-7} x'(0) - 2 x'(0) - 12$	
2. $y - 2y + 5y = -6e^{-1}$, $y(0) = 2$, $y(0) = 12$.	

S	Solu	itio	n															
T	Nrit	e th	e so	lutic	on h	\mathbf{ere}												

Unit Step Functions

The unit step function or the Heaviside function is defined as

$$\mathcal{U}(x-a) = \begin{cases} 0 & 0 \le x < a \\ 1 & x \ge a. \end{cases}$$

We can think about this function as being "off" on the interval [0, a) and being "on" on the interval $[a, \infty)$. Also, note that

$$1 - \mathcal{U}(x - a) = \begin{cases} 1 & 0 \le x < a \\ 0 & x \ge a. \end{cases}$$

So $1 - \mathcal{U}(x - a)$ is "on" on [0, a) and "off" on $[a, \infty)$. And for 0 < a < b

$$\mathcal{U}(x-a) - \mathcal{U}(x-b) = \begin{cases} 0 & 0 \le x < a \\ 1 & a \le x < b \\ 0 & x \ge b. \end{cases}$$

So, $\mathcal{U}(x-a) - \mathcal{U}(x-b)$ is "off" on [0, a), "on" on [a, b) and "off" on $[b, \infty)$. We can use unit step functions to "turn on" and "turn off" any function f on prescribed intervals. As a result, any piecewise function can be written as a combination of unit step functions.

piecewise function can be written as a combination of unit step functions. For example, the piecewise function

$$f(x) = \begin{cases} g(x) & 0 \le x < a \\ h(x) & x \ge a \end{cases}$$

can be written as $f(x) = (1 - \mathcal{U}(x - a))g(x) + \mathcal{U}(x - a)h(x)$. (We turn on g on [0, a) and turn off g on $[a, \infty)$ by using $1 - \mathcal{U}(x - a)$. Turn off h on [0, a) and turn on h on $[a, \infty)$ by using $\mathcal{U}(x - a)$). The piecewise function For example, the piecewise function

$$f(x) = \begin{cases} g(x) & 0 \le x < a \\ h(x) & a \le x < b \\ j(x) & x \ge b \end{cases}$$

can be written as $f(x) = (1 - \mathcal{U}(x - a))g(x) + (\mathcal{U}(x - a) - \mathcal{U}(x - b))h(x) + \mathcal{U}(x - b)j(x)$. We will see the advantage of rewriting piecewise functions as combinations of unit step functions when we learn the second translation theorem.

Example 4: Write a piecewise function as a combination of unit step functions

Exp	ress	the	fune	ctior	ı as	a co	omb	inat	ion (of ui	nit s	step	fun	ctior	ıs.									
														()	0	_	< 0							
														3 1	$0 \le 2 \le 2$	${}{{}} x \cdot $	< 2 < 5							
											f	f(x)	= {	x	2 - 5 <	$\stackrel{x}{<} x$	< 7							
														x^2	$x \ge$	≥ 7.								

Laplace transform of the unit step function: The Laplace transform of $\mathcal{U}(x-a)$ with $a \ge 0$ is

$$\mathscr{L}\left\{\mathcal{U}(x-a)\right\} = \frac{e^{-as}}{s}$$

Translation in x **property:** If $\mathscr{L}{f(x)} = F(s)$ and $a \ge 0$, then

 $\mathscr{L}\left\{f(x-a)\mathcal{U}(x-a)\right\} = e^{-as}F(s).$

In practice, we often need to find $\mathscr{L}\{g(x)\mathcal{U}(x-a)\}$. We can rewrite the above property by identifying g(x) with f(x-a) (hence, f(x) = g(x+a)). Thus, an alternative (and useful) way to express the translation in x property is this:

Translation in x property - alternative form: If $\mathscr{L} \{g(x+a)\} = G(s)$ and $a \ge 0$, then

$$\mathscr{L}\left\{g(x)\mathcal{U}(x-a)\right\} = e^{-as}G(s).$$

This says that to find the Laplace transform of a function g(x) times the unit step function $\mathcal{U}(x-a)$, we multiply the Laplace transform of g(x+a) by e^{-ax} .

Inverse Form of Translation in x property: If $f(x) = \mathcal{L}^{-1}{F(s)}$, then

$$\mathscr{L}^{-1}\{e^{-as}F(s)\} = f(x-a)\mathcal{U}(x-a).$$

This says that to find the inverse Laplace transform of a function of the form $e^{-as}F(s)$, we first find the inverse transform of F(s). Then we replace each x in the inverse transform of F(s) by x - a and multiply the resulting function by the unit step function $\mathcal{U}(x-a)$.

	1 / C	• 1	· · ·	
Example 5. Find La	nlace transform	using transi	ation in r	nronerty
Drampic 0. 1 ma Da	place fransionin	using transi	auton m u	property

Find the Laplace transform:		
		$(\ldots (\pi))$
1. $\mathscr{L}\left\{(x-1)^{2}\mathcal{U}(x-1)\right\}$	2. $\mathscr{L}\left\{x^{2}\mathcal{U}\left(x+1\right)\right\}$	3. $\mathscr{L}\left\{\sin(x)\mathcal{U}\left(x-\frac{1}{2}\right)\right\}$

Example 6: Find Laplac	e transform o	of a piecew	ise functio	n using	translatio	on in x	property								
Find the Laplace transform	Find the Laplace transform of the piecewise function in Example 4.														

ļ	Solu	itio	n															
,	Writ	e th	e so	lutio	on h	ere												

Example 7: Find inverse Laplace transform using translation in x property														
Find the inverse Laplace transform:														
$(-\pi s/2)$	$((1 + e^{-2s})^2)$													
1. $\mathscr{L}^{-1}\left\{\frac{se^{-n\gamma_2}}{s^2+4}\right\}$	2. $\mathscr{L}^{-1}\left\{\frac{(1+e^{-1})}{s+2}\right\}$													

S	Solution																						
т	Writ	e th	e so	lutio	on h	ere																	

Example 8: Solve an IVP using Laplace transform														
Solve the IVP:														
	y'' + 5y' + 6y = g(x), y(0) = 0, y'(0) = 2,													
where														
	$\begin{array}{c} 0 0 \leq x < 1 \\ 1 \leq x \leq 5 \end{array}$													
	$g(x) = \begin{cases} x & 1 \le x < 0 \\ 1 & r > 5 \end{cases}$													

S	Solu	itio	n															
7		e th	e so	lutio	on h	\mathbf{ere}												