Direction fields

Direction fields

Consider the first order ODE $\frac{dy}{dx} = f(x, y)$. The quantity $\frac{dy}{dx}$ at a point (x, y) is the slope of the tangent line at (x, y) to the solution function y. Hence, the value of the function f(x, y) at any point (x, y) is the slope of y at that point. If we systematically evaluate f at various points (x, y) in the plane and plot short line segments at each point (x, y) with slope f(x, y), then we obtain the **direction field** or the **slope field** of the equation $\frac{dy}{dx} = f(x, y)$. The direction field suggests the shape of a family of solution curves of the differential equation.

Example 1: Direction field

Consider the first order ODE $\frac{dy}{dx} = 2xy$. Sketch the direction field. Sketch the solution curves that pass through (0,1), (0,-1) and (0,0).

Example 2: Autonomous Equation																													
d and	ida	. + b .	6	t	dan		_ dį	J	(9		b		(+)			. <u>+</u> +1				. (:.	. 		nda		time		f	contr	
 speci	les.	: UII€	e mrs	t or	der	ועט	d	, =	y(z	-y	wn	ere ;	y(ı)	rep	eser	10 01.	te po	opui	atio	11 (11	1 011	ousa	nas) at	um	eιc	na	certa	1111
 - 1.	Ske	etch	the	dire	ectic	on fi	eld.	Fin	d th	e e	mil	ibri	ստ	sol	utio	ns.													
											-						011 8	9 V 9	bou	t li	m 11	(+)?							
																			ıbou										
 3.	If t	the i	nitia	al po	opul	atio	n is	300	0, i.	e., y	(0)	= 3	000,	wha	at ca	n y	ou s	ay a	bou	$t \lim_{t \to t}$	m y ∞	(t)?							

Solution

1. This is an exa	ampl	e of	an	auto	non	nous	OI	DE:	$\frac{dy}{dx}$	= f	(y).	The	e eq	uili	bri	um	solı	itio	ns a	are 1	the s	solut	ions	<i>y</i> =	= c
where c is a z																									
	4 Î Y	+			+-+		+	tt-	· - +	1	- +	+	- +	-1 1											
				1					 <u> </u> <u>+</u>		1	$\begin{pmatrix} 1 \\ 1 \end{pmatrix}$													
	5			Ì	Ì		<u> </u>		Ň		Ì	Ì			Ì		 								
	-3 C	(0, 3)	\ ¦ \ \-¦-\	\ \	-}-}	/ ¦ 	- <i>+</i> - '	\ \ \\-	\	\ ¦ \ }-¦-⊱	/ - +	}} } ≀	/ - <i> -</i>	\ \ -\ \	¦ } }-		 		 		 <u> </u>				
	- /\							\ <u>\</u>		\	1										 				
	.5			·			$\langle \rangle$		``````````````````````````````````````			$\langle \rangle$		\ \ \							 				
	-2- B	(0, 2)					<u> </u>		`		~ `			~ `	、 ~						 				
	.5				//	/	///	//	/ /	///	/ /	//		/ /			 		 		 				
	1	(0, 1)				/	/ /		/ / -/		1.		/				 				 1				
	ł	11	11	. /	11	1	/ /	11	1	11	1	11	1	/ /	1										
	.5	//			//	/	/ /	 		//	/ .	//		//							 				
					1							1									x				
	0		0!5		1	1.5	5	2		2!5		3	3.5	5	4		4!5		5	5	5	`			
2. From the dire	ectio	n fie	ld,	we s	see t	hat	if y	y(0)	= 1	000,	the	n_{t}	$\lim_{n \to \infty} y$	(t)	= 2	2000	. M	ore	gen	eral	ly, p	opu	latio	n th	.at
starts below 2	2000	will	ste	adily	/ inc	reas	e ai	nd a	appro	bach	200	0.	,												
3. From the dire	ectio	n fie	ld,	we s	see t	hat	if y	(0)	= 3	000,	the	n_{t-1}	$\lim_{\to\infty} y$	$\prime(t)$	= 2	2000	. M	ore	gen	eral	ly, p	opu	latio	n th	.at
starts above 2	2000	will	ste	adily	/ dec	reas	se a	nd a	appr	oach	200	0.													