Special types of first order equations - Separable Equations

Recommended reading from Zill's DEs with BVP-7e: Section 2.2 (pg 44-50): Examples 1 through 4.

Solve Separable Differential Equations

A first order equation of the form

$$\frac{dy}{dx} = g(x)h(y)$$

is said to be **separable**. Method of solution of a first order separable equation:

- 1. Rewrite the equation as $\frac{1}{h(y)}dy = g(x)dx$.
- 2. Integrate both sides $\int \frac{1}{h(y)} dy = \int g(x) dx$
- 3. Obtain a 1-parameter family of solutions: H(y) = G(x) + C where H(y) is an antiderivative of $\frac{1}{h(y)}$ and G(x) is an antiderivative of g(x).

To solve a initial value problem where the ODE is separable, we find the 1-parameter family of solutions and use the initial conditions to determine the parameter C.

Example 1: Solve a separable equation

	d y	y 2^{2}					
Solve the linear, first order, separable equi	$\frac{1}{dx}$	$\frac{x}{x} = 3x^2y$					

S	Solution Write the solution home																						
V	Write the solution here																						

Example 2: Solve an initial value p	roblem
Solve the nonlinear, first order, initial va	lue problem
	$1 du = u \sin x$
	$\frac{1}{x}\frac{dy}{dx} = \frac{y \sin x}{y^2 + 1}, y(\pi) = 1.$
Is your solution an implicit or an explici	t solution?

Solution		
Write the solution here		

Exa	\mathbf{mp}	e 3	: Lo	\mathbf{sin}	g sc	lut	ions	}																	
Find	a 1	-par	ame	eter	fam	ily c	of so	lutio	ons o	of th	ne no	onlii	near	, firs	st or	der.	, sep	arat	ole e	qua	tion				
											$(a^2$	1)	da	(2)		nau) c	la	0							
											(<i>y</i> -	- 1)	ux –	- (2į	<i>y</i> + .	cy)u	y =	0.							
Dete	rmi	ne t	wo I	parti	cula	r so	lutio	ons	whic	ch ai	e n	ot n	neml	oers	of t	he f	ami	ly of	sol	utio	ns.				

S	Solution																						
T	Nrit	e th	e so	lutio	on h	ere																	

Example 4: An Application - Newton's Law of Cooling

Newton's Law of cooling says that the rate of change of the temperature T of an object is proportional to the difference in the temperature of the surrounding environment and of the object. This gives the differential equation

$$\frac{dT}{dt} = k(S - T),$$

where T is the temperature of the object which is a function of time t, S is the constant temperature of the surrounding environment and k is a proportional constant.

1. Solve the equation for T. (Note that k and S are constants.)

2. Suppose a corpse was discovered in a room at midnight and its temperature was 80° F. The temperature of the room is constant at 65° F. Two hours later the temperature of the corpse dropped to 70° F. Determine the time of death. Assume the temperature of a corpse at time of death is 98.6° F.

Solution Write the solution here																						
Writ	e th	le so	lutio	on h	\mathbf{ere}																	