Special types of first order equations - Linear Equations

Recommended reading from Zill's DEs with BVP-7e: Section 2.3 (pg 53-60): Examples 1 through 6.

Solve first order linear equations

A first order linear differential equation is an equation of the form

$$a_1(x)\frac{dy}{dx} + a_0(x)y = g(x)$$

Method of solution of a linear first order equation:

1. Rewrite the equation in standard form by dividing both sides by $a_1(x)$ to obtain

$$\frac{dy}{dx} + P(x)y = Q(x).$$

- 2. Find the integrating factor $I(x) = e^{\int P(x)dx}$.
- 3. Multiply both sides of the equation in Step 1 by I(x) to obtain

$$I(x)\frac{dy}{dx} + I(x)P(x)y = I(x)Q(x).$$

4. By the product rule, the left hand side of the above equation becomes $\frac{d}{dx}[I(x)y]$, i.e., the derivative with respect to x of the product of the integrating factor and y. So, the above equation becomes

$$\frac{d}{dx}\left[I(x)y\right] = I(x)Q(x).$$

5. Integrate both sides of the above equation with respect to x to obtain

$$I(x)y = \int I(x)Q(x)dx + C$$

6. Isolate y by dividing both sides of the above equation by I(x) to obtain a 1-parameter family of solutions.

Note: applying the formula $\frac{d}{dx} [e^u] = e^u \frac{du}{dx}$ with $u = \int P(x) dx$ we have

$$\frac{d}{dx}\left[I(x)\right] = \frac{d}{dx}\left[e^{\int P(x)dx}\right] = P(x)e^{\int P(x)dx} = P(x)I(x).$$

Applying the product rule $\frac{d}{dx}[uv] = u\frac{dv}{dx} + v\frac{du}{dx}$, we have

$$\frac{d}{dx}\left[I(x)y\right] = I(x)\frac{dy}{dx} + y\frac{d}{dx}\left[I(x)\right] = I(x)\frac{dy}{dx} + yP(x)I(x) = \text{left side of equation in Step 3.}$$

This is the justification for the claim at the beginning of Step 4.

In Step 5, when we integrate with respect to x the quantity $\frac{d}{dx}[I(x)y]$ on the left side, the $\frac{d}{dx}$ "goes away." This is because integration and differentiation are inverse operations of each other.

Note: It turns out that if P(x) and Q(x) are continuous on a common interval (a, b), then the 1-parameter family of solutions obtained by this method is the **true general solution** of the differential equation.

Exa	mp	le 1	: So	lve	a li	nea	r fi	\mathbf{rst}	orde	er e	qua	atio	n															
Find	the	e gei	neral	l sol	utio	n of	$_{\mathrm{the}}$	equ	atio	n an	nd d	leter	mine	$e ext{ the}$	e lar	gest	int	erval	love	er w	hich	the	e sol	utio	n is	defi	ned.	
													du															
												x	$\frac{dy}{dx}$	+2y	= x	; ⁻³ .												

	Solu	itio	n															
,	Writ	e th	e so	lutio	on h	ere												

Exa	\mathbf{mp}	le 2:	Solve	e an	IVI	2																
Solv	e th	e init	ial val	ue p	roble	em <i>i</i>	ı' +	(tar	(x)i	i = 0	\cos^2	x.	u	(0)	 1.							
				r				(/0	,		··· ,	9	(0)								

Solu	itio	n															
Writ	e th	ie so	lutio	on h	ere												

Example 3: Discontinuous Forcing Term

In this example we solv jump discontinuity. Consider the equation				where the forci r	ng term $Q(x)$ i	is a function with a
		$Q(x) = \bigg\{$	$\begin{bmatrix} 1, & \text{if } 0 \le x \\ -1, & \text{if } x > \end{bmatrix}$	≤ 1		
1. Find the general satisfied.	solution for $0 \le x \le$	1 and cho	ose the const	ant in the solut	ion so that the	initial condition is
2. Find the general s part and the solu	$ \begin{array}{l} \text{solution for } x > 1 \text{ an} \\ \text{tion in this part agr} \end{array} $			the solution so	that the solutio	n from the previous
Note: By "glueing" the equation except at				er, we obtain a	continuous fur	nction that satisfies

S	Solu	itio	n															
T	Writ	e th	e so	lutio	on h	\mathbf{ere}												