Recommended reading from Zill's DEs with BVP-7e: Section 2.4 (pg 62-68): Examples 1 through 4.

Exact Equations and Method for Solving Exact Equations

Let F(x, y) be a function of 2 variables x and y. The **total differential** of F, denoted by dF is

$$dF = \frac{\partial F}{\partial x}dx + \frac{\partial F}{\partial y}dy,$$

where $\frac{\partial F}{\partial x}$ is the partial derivative of F with respect to x and $\frac{\partial F}{\partial y}$ is the partial derivative of F with respect to y. A differential expression M(x, y)dx + N(x, y)dy is said to be **exact** if there is a function F(x, y) such that

$$\frac{\partial F}{\partial x}(x,y) = M(x,y) \text{ and } \frac{\partial F}{\partial y}(x,y) = N(x,y).$$

In other words, it is the total differential of F(x, y):

$$dF(x,y) = M(x,y)dx + N(x,y)dy$$

If M(x,y)dx + N(x,y)dy is an exact differential expression, then the equation

$$M(x,y)dx + N(x,y)dy = 0$$

is called an **exact differential equation**. It follows that a 1-parameter family of solutions of the exact differential equation is

$$F(x,y) = C.$$

Test for Exactness: The differential equation M(x, y)dx + N(x, y)dy = 0 is an exact equation if and only if

$$\frac{\partial M}{\partial y}(x,y) = \frac{\partial N}{\partial x}(x,y),$$

here we assume M(x, y), N(x, y) are continuous and have continuous first partial derivatives in a rectangular region R: a < x < b, c < y < d.

Once we have confirmed that the equation Mdx + Ndy = 0 is exact, to solve it we need to find a function F(x, y) such that $\frac{\partial F}{\partial x} = M$ and $\frac{\partial F}{\partial y} = N$. This suggests the following solution method. Method for Solving Exact Equations:

1. Integrate M with respect to x, the "constant of integration" is a function of y, call it g(y). So, we get

$$F(x,y) = \int M(x,y)dx + g(y)$$

and we need to find g(y).

- 2. Take the partial derivative with respect to y of both sides of the above equation and substitute N for the resulting left hand side $\frac{\partial F}{\partial y}$. We can then solve for g'(y).
- 3. Integrate g'(y) with respect to y to obtain g(y), we can either add a C for the constant of integration at this step or omit adding a constant.
- 4. Substitute g(y) into the right hand side of the equation in Step 1 to get F(x, y).
- 5. The solution to the exact equation Mdx + Ndy = 0 is the 1-parameter family of solutions F(x, y) = C.

Example 1: Construct exact equations

Find	the	e to	tal	diffe	rent	ial	dF	of t	he ø	iven	fu	nctio	n I	F(x)	<i>u</i>).	Use	e dF	to	cor	stru	ct a	n e	exact	: dif	fere	ntia	l ea	uati	on	
M da	:+1	Ndu	= () wh	ose	solu	tion	is i	F(x,	u) =	= C.	Vei	rifv	that	$\frac{\partial N}{\partial N}$	$\frac{I}{I} =$	$\frac{\partial N}{\partial N}$		001	lo ur u					1010		1 09	ciciciz		
		, ag			0.00	0010			(,	9)	0.	10.		011000	∂y	/	∂x					0								
1.	F(x, y) = ($3x^2y$	1+5	bxy	$+y^{3}$	+ 5	Ó						2. 1	F(x,	y) =	$x^2 y$	y — 1	tan x	: + Į	y^2								

Solu	itio	n															
Writ	e th	e so	lutio	on h	ere												

Exa	mp	le 2	: So	olvii	ng a	n e	xac	t eq	uat	ion																
Veri	fy tł	nat 1	he	equa	tion	is e	exac	t an	d fir	nd a	1-p	arar	nete	r fa	mily	of	solut	tion	s of	the	equ	atio	1			
	ľ								(2~2	a. 1	0	2) 1	~ 1 /	(<u>_</u> 3	1 0	2	10	.2)		0						
									(3 x)	y +	oxy	<i>)</i> as	ι + ((<i>x</i> -	+ 01	<i>y</i> -	- 12	y)a	y =	0.						

Solu	itio	n															
Writ	e th	e so	lutio	on h	\mathbf{ere}												

$\mathbf{E}\mathbf{x}$	amŗ	ole	3:	So	lvir	ng a	ın e	exac	t eq	luat	tion																
Ver	ify t	hat	th	ie e	qua	tion	is (exac	t an	d sc	lve	$_{\mathrm{the}}$	initi	al v	alue	pro	bler	n									
	Ĭ						(2			o2		n) .	1	(9			.3 .	1) 1.	0							
							(y	cos	<i>x</i> –	5x	y — .	$(x)^{c}$	x +	(2y)	sin a	c — :	r +	my	r)ay	= 0	,	y(0)) = (е.			

S	Solu	itio	n															
T	Nrit	e th	e so	lutio	on h	ere												

Special Integrating Factors

Sometimes we can solve a "nonexact" equation Mdx + Ndy = 0 by finding an integrating factor I(x, y) so that after multiplying by I(x, y) the equation

$$I(x,y)M(x,y)dx + I(x,y)N(x,y)dy = 0$$

is exact.

Method for finding integrating factors: Given a "nonexact" equation Mdx + Ndy = 0:

• If $\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}$ is a function of x alone, then an integrating factor is

$$I(x) = exp\left[\int \left(\frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N}\right) dx\right]$$

• If $\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}$ is a function of y alone, then an integrating factor is

$$I(y) = exp\left[\int \left(\frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M}\right) dy\right]$$

Example 4: No	act equations made exact	
Show that the d	ntial equation is not exact. Find an integrating factor to make it exact.	
1 (2 , 2 ,		
1. $(x^2 + y^2 +$	+ xydy = 0 2. $\cos xdx + \left(1 + \frac{2}{y}\right)\sin xdy = 0$	

S	Solu	itio	n															
T	Writ	e th	e so	lutio	on h	\mathbf{ere}												