Reduction of Order

Reduction of Order Method

Consider the linear, second-order, homogeneous differential equation

 $a_2(x)y'' + a_1(x)y' + a_0(x)y = 0.$

By the result in Lecture 7, the general solution to this equation is $y = c_1y_1 + c_2y_2$ where y_1 and y_2 are linearly independent solutions of the equation on some interval I. In the next lecture, we will learn a technique to relate this equation to an algebraic equation. The technique will help us find the two independent solutions y_1 and y_2 in many cases but in some cases it only gives a single solution. To find the second solution, we can apply the method of **reduction of order**.

Reduction of Order Method: Assume that we have found a nontrivial solution y_1 of the homogeneous equation

$$a_2(x)y'' + a_1(x)y' + a_0(x)y = 0.$$

We seek a second solution y_2 such that y_1 and y_2 are linearly independent. Recall that *independence* means y_2 is not a *constant multiple* of y_1 . So we assume that $y_2(x) = u(x)y_1(x)$ for some function u(x). It follows that $y'_2 = uy'_1 + y_1u'$ and $y''_2 = uy''_1 + 2y'_1u' + y_1u''$. Substitute y_2 , y'_2 and y''_2 into the equation. Via a substitution w = u', we will obtain a linear first order equation in w which we know how to solve. Next, we solve for w and then u. This helps us obtain y_2 .

Example 1: Find a second solution by reduction of order - constant coefficients Given that $y_1 = e^{5x}$ is a solution to y'' - 25y = 0 on the interval $(-\infty, \infty)$. Use reduction of order to find a second solution y_2 . Form the general solution to the equation.

Solution																							
	Writ	e th	e so	lutio	on h	ere																	

Example 2: Find a second solution by reduction of order - nonconstant coefficients

Given that $y_1 = x$ is a solution to $x^2y'' - xy' + y = 0$ on the interval $(0, \infty)$. Use reduction of order to find a second solution y_2 . Form the general solution to the equation.

Solu	itio	n															
Writ	e th	e so	lutic	on h	ere												

Example 3: A general equation

	Supp	ose	we	divi	de t	he e	qua	tion	$a_2($	x)y''	' + c	$u_1(x)$)y' -	$\vdash a_0$	(x)y	= 0) by	$a_2($	x) to	o ob	tain	an	equa	atior	ı in	sta	nda	rd i	forn	n
														$\mathbf{D}(m)$		O(2)21	_ 0												
												y	+ 1	(x)	g $+$	- Q(.	<i>L</i>) <i>Y</i>	- 0.												
	Assu	me	that	y_1	is a	a so	utio	n to	o th	e ab	ove	equ	atio	n.	Use	the	red	ucti	on o	of or	der	met	hod	to	sho	w th	at t	he	seco	nd
2	sorut	1011	y_2 is	s giv	en	бу						,		,	. ſ	e^{-}	∫ P(a	(x)dx												
											í	$y_2(x)$) =	$y_1(x)$	c) [y_1^2		dx											
	Give	n th	at y	$v_1 =$	$\sin($	(3x)	is a	sol	utio	n of	y'' -	+9y	= (). U	se tł	ne a	bove	e for	mula	a to	find	l the	e sec	ond	sol	utior	1 y_2	•		

Solution																						
Ţ	Vrit	e th	e so	lutio	on h	ere																