Homogeneous Linear Second Order Equations

Consider the homogeneous linear second order equation with constant coefficients

$$ay'' + by' + cy = 0$$

where a, b and c are real constants and $a \neq 0$. Method of solution:

1. Write down the associated **characteristic** (or **auxiliary**) equation, which is an algebraic equation of degree 2 in a variable m

$$am^2 + bm + c = 0$$

2. The characteristic equation is a quadratic equation in m, its roots are

$$m_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $m_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

- (i) If the discriminant $b^2 4ac$ is positive, then the roots m_1 and m_2 are real and distinct.
- (ii) If $b^2 4ac = 0$, the roots are real and equal, i.e., $m_1 = m_2$.
- (iii) If $b^2 4ac < 0$, the roots m_1 and m_2 are complex (non-real) and they are conjugate. In other words, $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$ where α and β are real and i is the *imaginary unit* with the property that $i^2 = -1$.
- Case 1 Distinct Real Roots: The general solution to the equation is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x},$$

where c_1 and c_2 are arbitrary constants.

• Case 2 - Repeated Real Roots: In this case $m_1 = m_2$, the general solution is

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$$

• Case 3 - Conjugate Complex Roots: In this case $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, the general solution is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x) = e^{\alpha x} \left(c_1 \cos(\beta x) + c_2 \sin(\beta x) \right)$$

Note 1: the above method of solution is based on the guess that a possible solution of the equation has the form $y = e^{mx}$. We now ask the question: for what values of m will $y = e^{mx}$ be a solution of the equation? Take the derivatives and substitute $y = e^{mx}$, $y' = me^{mx}$ and $y'' = m^2 e^{mx}$ into the equation, we obtain

$$am^{2}e^{mx} + bme^{mx} + ce^{mx} = \underbrace{e^{mx}}_{\text{always } > 0} (am^{2} + bm + c) = 0.$$

This gives rise to the characteristic equation.

Note 2: in the case of repeated real roots, the characteristic equation only gives us one solution $y = e^{m_1 x}$. The reduction of order method gives us the second solution $y = x e^{m_1 x}$.

Note 3: in the case of complex roots, we need Euler's formula $e^{i\beta x} = \cos(\beta x) + i\sin(\beta x)$ to eliminate the *i* and write the solution in terms of sine and cosine.

Example 1: Solve linear second	order equations
Find the general solution to the giv	en differential equation:
1. $y'' - 3y' + 2y = 0$	2. $y'' + 8y' + 16y = 0$ 3. $y'' - 4y' + 7y = 0$

Solu	itio	n															
Writ	e th	e so	lutio	on h	ere												

Example 2: Solve an IVP	
Solve the IVP: $y'' + 2y' + 17y = 0$; $y(0) = 1$, $y'(0) = -1$.	

	Solu	itio	n															
٦	Writ	e th	e so	lutio	on h	ere												

Consider the homogeneous linear nth-order equation with **constant coefficients**

$$a_n \frac{dy^n}{dx^n} + a_{n-1} \frac{dy^{n-1}}{dx^{n-1}} + \dots + a_1 \frac{dy}{dx} + a_0 y = 0$$

where $a_n, a_{n-1}, \ldots, a_0$ are real constants and $a_n \neq 0$. The associated characteristic equation is an algebraic equation of degree n in a variable m:

$$a_n m^n + a_{n-1} m^{n-1} + \ldots + a_1 m + a_0 = 0.$$

In solving this equation, there are several scenarios that may occur:

- 1. All of its roots are real and distinct.
- 2. All of its roots are real but some of the roots are repeated.
- 3. Some or all of its roots are complex (non-real).
- 4. Some complex (non-real) roots are repeated

There could be other scenarios such as when some of the roots are real and some of the roots are non-real. However, if we know how to deal with the scenarios outlined above, we will be able to adapt the strategy to any other combinations. **Note:** The complex (non-real) roots of the characteristic equations always appear in **conjugate pairs**. For example, if 2 + 3i is a root, then 2 - 3i must also be a root.

• Case - Roots are real and distinct: If the *n* roots of the characteristic equation are m_1, m_2, \ldots, m_n , then the general solution to the equation is

$$y = c_1 e^{m_1 x} + c_2 e^{m_2 x} + \ldots + c_n e^{m_n x}.$$

• Case - Roots are real but some are repeated: If $m = m_1$ is a root which repeats k times, then it gives rise to k independent solutions

$$e^{m_1x}, xe^{m_1x}, x^2e^{m_1x}, \dots, x^{k-1}e^{m_2x},$$

so the general solution will contain a linear combination of these independent solutions:

$$e^{m_1x}(c_1+c_2x+c_3x^2+\ldots+c_kx^{k-1}).$$

For example, if the characteristic equation is

$$(m-5)^2(m+2)^3(m-7)(m+4) = 0,$$

then the general solution will be

$$y = e^{5x}(c_1 + c_2x) + e^{-2x}(c_3 + c_4x + c_5x^2) + c_6e^{7x} + c_7e^{-4x}.$$

• Case - Complex roots: Any complex (non-real) roots must occur in conjugate pairs. Hence, if $\alpha + i\beta$ is a root, then $\alpha - i\beta$ must also be a root. This pair of complex roots give rise to two independent solutions

$$e^{\alpha x}\cos(\beta x), e^{\alpha x}\sin(\beta x),$$

so the general solution will contain a linear combination of these two independent solutions:

$$e^{\alpha x}(c_1\cos(\beta x)+c_2\sin(\beta x)).$$

• Case - Repeated complex roots: If $\alpha + i\beta$ is a complex root which repeats k times, then $\alpha - i\beta$ must be a complex root which repeats k times. These roots give rise to the 2k independent solutions

$$e^{\alpha x}\cos(\beta x), xe^{\alpha x}\cos(\beta x), \dots, x^{k-1}e^{\alpha x}\cos(\beta x)$$
$$e^{\alpha x}\sin(\beta x), xe^{\alpha x}\sin(\beta x), \dots, x^{k-1}e^{\alpha x}\sin(\beta x)$$

so the general solution will contain a linear combination of all of these independent solutions.

]	Exa	mpl	e 3	: Re	eal a	and	Di	stin	ct I	Roo	\mathbf{ts}													
											,	,,	~ //		,									
	t'ind	the	ger	ieral	sol	utio	n to	the	equ	latio	n y'	"+	3y''	- 4	y' –	12y	=0).						
	~ 1																							
	Solu	itioi	n																					
٦	Writ	e th	e so	lutio	on h	ere																		

Examp	le 4: Rep	eated	l Re	al Ro	ots													
Find the	e general s	olutio	n to t	the ea	atic	$n u^{(i)}$	4)	8y'' -	+ 16	in =	= 0							
1 ma th	e general b	514010		une eq	IC			$\bigcirc g$	- 10	9	0.							

ļ	Solu	itio	n															
	Writ	e th	e so	lutio	on h	ere												

Example 5: Distin	nct C	omple	ex I	loots												
Find the general sol	ution	to the	eau	ation <i>i</i>	(4) +	- 511''	' + 6	m =	0							
i ma the general bo	uuion	00 0110	oqu	anon s	· ·	09	- 0	9	0.							

S	Solu	itioi	n															
7	Nrit	e th	e so	lutio	on h	ere												

Example 6: Repeated Complex Roots	
Find the general solution to the equation $y^{(4)} + 4y'' + 4y = 0$.	
ind the Schord boldton to the equation g + 1g + 1g = 0.	

Solı	itio	n															
Writ	e th	ie so	lutio	on h	ere												