
3.2. Polynomial Functions and their graphs Thursday, October 24, 2013 9:42 AM
A polynomial function is a function of the form
$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_n x + a_n$
where a_n ; a_{n-1} ;, a_1 , a_0 are real numbers
and $a_n \neq 0$.
E_{g} . $f(x) = -3x^{5} + 4x^{4} - \frac{1}{2}x^{3} + \frac{7}{8}x^{2} - x + 10$.
$f(x) = 3x^{4}(x-2)(x+5)$
There are examples of polynomial functions.
E.g. $f(x) = -\frac{3}{x^2} + \frac{2}{x} - 5$
$f(x) = 3\sqrt{x} + 5\sqrt[3]{x} + 7$
There are MOT polynomial functions.
Important Terminology:
Given a polynomial function:
$f(x) = a_{n-1}x^{n-1} + \dots + a_{1}x + a_{n}$
leading coefficient
The highest exponent of x is called the degree.
The well. of x degree in called the leading
eo efficient.
The term anx" is called the leading term.

E.g. $f(x) = 3x^4 - 7x^3 + 4x^2 - 5x + 10$. Degree = 4 Leading coefficient = 3 leading term = 3x4 Obj 1: Determine the End Bahavior of Polynomial Functions Using the Leading Term Test. Observation: Rises Right Rises left Falls Left Falls Right $f(x) = -3x^2$ f(x) = 3 x2 River Right River Falla Falls $f(x) = -4x^3$ $f(x) = 7x^3$

(b) leading term = $\begin{bmatrix} -\frac{3}{5} \\ x \end{bmatrix}$

End Bahavion: Falls left, Falls Right.

E.g. Given $f(x) = -4x^3(x-1)^2(x+5)$

Q1: What is the leading term of f?

Q? Determine the end behavior of f?

Sol.

G1: Leading term = $(-4x^{5})\cdot(x^{2})\cdot(x)$ $= [-4x^{5}]\cdot(x^{2})\cdot(x)$ $= [-4x^{5}]\cdot(x^{2})\cdot(x)$

Q2.

Falls left, Falls right.

E.g. Given $f(x) = 2x^3(3x-1)(2x+5)^2$

Q1: Find the leading term.

Q2. Determine end behavior.

Sol: Q1: (2x3)·(3x)·(2x)

 $= 2x^3 \cdot 3x \cdot 4x^2 = 24x^6$

Q2: Rises left, Rises Right.

Obj 2: Zeros of Polynomial Functions and their multiplicity.

Terminology: If f is a polynomial function,
the value (s) of x for which f(x) is equal
to 0 are called the zeros (or roots) of f.