4.4. Exponential and Logarithmic Equations Tuesday, December 1, 2019 9:37 AM Exponential Equations Obj 1: Use like bases to solve exponential equations. E.g. Solve 2 = 16 Step 1: Rewrite the equation so that both sides have the same base: [M N] Exp. Exp. b = b [3x - 8] = 4Step 2: Set exponents equal: Set M=N. 3x - 8 = 4Step 3: Solve for x 3x = 12 (Add 8) x = 4 (Divide by 3) E.g. Solve x+3 x-127 = 9 Step 1: Rewrite so that both sides have the same buse. Here, the common base is 3

$$(3^{a})^{x+3} = (3^{2})^{x-1} (27=3^{3}; 9=3^{2})$$
Recall: Power of power rule:

$$(p)^{q} p p q$$

$$(b)^{q} p p q$$

$$(a+3) = 2(a-1)$$
Step 2: Set exponents equal

$$3(a+3) = 2(a-1)$$
Step 3: Solve for a

$$3x + 9 = 2x - 2 (\text{Distribute})$$

$$x = -11 (\text{Trolete } x)$$
E.g. Solve
$$8^{x+2} = 4^{x-3}$$

$$(2^{3})^{x+2} = (2^{2})^{x-3} (\text{Rewrite})$$

$$2^{3\cdot(x+2)} = 2^{(x-3)} (\text{Power of Rower})$$

3(x+2) = 2(x-3) (Set exponents equal) 3x+6 = 2x-6 (Distribute) x = -12 (solve for x) Obj 2: Solve exponential equations using Logarithms Mote: In many cases, it is difficult to rewrite both sides into the same base. We use logarithm in those situations. _____ expression E.g. Solve 4 - 1 = 14 Step 1: Inolate the exponential expression. 4 = 15 (Add 1 to both rides) Step 2: Take the natural logarithm of both rides la $ln(4^{x}) = ln(15)$ Step 3: Apply the Power Rule to simplify

Tresday, December 3, 2019 1004 AM
a number a number

$$\mathbf{x} \cdot \left[ln(4) \right] = \left[ln(15) \right]$$

Step 4: Solve for \mathbf{x} .
 $\mathbf{x} = \frac{ln(15)}{ln(4)}$ (Divide both nider by
 $ln(4)$)
We can use calculators to get decimal approximation
for \mathbf{x} : $\mathbf{x} \approx 1.953...$
E.g. Solve: $\mathbf{x} \approx \mathbf{expression}$
 $\mathbf{3} \cdot \frac{1}{7}^{2\mathbf{x}+4} + 2 = 11$
Step 1: Inolate the exponential expression
 $\mathbf{3} \cdot \frac{1}{7}^{2\mathbf{x}+4} = 9$ (Subtract 2)
 $\mathbf{z}^{2\mathbf{x}+4} = 3$ (Divide by 3)
Step 2: Take ln of both sides
 $ln(\frac{1}{7}^{2\mathbf{x}+4}) = ln(3)$
Step 3: Power Rule:
 $(2\mathbf{x}+4) ln(7) = ln(3)$

Steph: Solve for x: $2x + 1 = \frac{l_n(3)}{l_n(7)} \quad (\text{Divide by } l_n(7))$ ln(7) $= \frac{ln(3)}{ln(7)} - 1 \quad (Subtract 1)$ X $x = \frac{ln(3)}{ln(7)} - 1$ (Divide by 2) 2 Note: If the base is e, then we have: $ln(e^{M}) = M$ E.g. Solve: 5.e - 12 = 8 Step 1 : Isolate the exponential expression: $5 \cdot e^{x+6} = 20$ (Add 12) e^{x+6} = 4 (Divide by 5) Step 2: Take In of both sides: $ln(e^{x+6}) = ln(4)$