$$f(x) = \frac{1}{5}x + 7$$

$$y = \frac{1}{5}x + 7$$
 (Replace $f(x)$ with y)

$$x = \frac{1}{5}y + 7$$
 (Interchange x and y)

$$x - 7 = \frac{1}{5} \gamma$$

$$5(x-7)=y$$

$$5x - 35 = y$$

$$y = 5x - 35 \rightarrow f^{-1}(x) = 5x - 35$$

Answer: D.

$$g(l(x)) = Z\left(\frac{x+8}{Z}\right) - 8 = x+8-8$$

The other two do not simplify to x.

So, g(x) and h(x) are inverses of one another.

Answer: A.

Short Answer:

-3.9 x -0.59 0.59 down - 3.9 x

$$f(15) = \frac{(15)-5}{2} = 5$$

$$g(5) = 7(5) + 2 = 37$$

Amwen: 37

Ennay

$$f(x) = 4x^2 + 3x + 5 ; g(x) = 3x - 3$$

$$(3 - 1)(x) = g(1(x)) = g(4x^2+3x+5)$$

= $3(4x^2+3x+5) - 3$

$$= |2x^2 + 9x + 15 - 3|$$

$$(g \circ f)(x) = 12x^2 + 9x + 12$$

(18)
$$f(x) = \frac{5}{7x-1}$$
. Find inverse

$$y = \frac{5}{7x-1}$$
 (Replace $f(x)$ with y)

$$x = \frac{5}{7y - 1}$$
 (intenchange x and y)

$$x(7y-1) = (\frac{5}{7y-1})(7y-1)$$
 (Multiply both aides by $7y-1$)

$$x\left(7_{3}-1\right)=5$$

$$7y - 1 = \frac{5}{x}$$
 (Divide both sides by x)

$7y = \frac{5}{x} + 1 (Add 1)$
$y = \frac{\frac{5}{x} + 1}{7} (Divide by 7)$
7
$f^{-1}(x) = \frac{5}{x} + 1$ (Replace y by $f^{-1}(x)$)
7 (x) = - (Repease y my 7 (x))
T
(you can leave the answer like this or simplify
as bellows:
$\frac{1}{5} + \frac{1 \cdot x}{5 + x}$
as follows: $f^{-1}(x) = \frac{5}{x} + \frac{1 \cdot x}{1 \cdot x} = \frac{5 + x}{x}$
7 7 7
_
$=\frac{5+x}{x}\cdot\frac{1}{7}=\frac{5+x}{7x}$
727