1.5 Quadrate Equations Wednesday, August 28, 2019 12:38 PM

E.g. of a gradratic equation:

$$x^2 - 7x + 10 = 0$$

In general, a quadratic equation is an equation of + ha form

$$ax^2 + bx + c = 0$$

a, b, c are real numbers and a + 0

E.g.
$$x^2 - 7x + 10 = 0$$

$$a=1; b=-7; c=10$$

Obj 1: Solve a grad ratic equation by factoring.

$$(x-5)(x-2)=0 \rightarrow \text{ Runiar to solve}$$

Set
$$x - 5 = 0$$
 on $x - 2 = 0$

$$x = 5$$
 on $x = 2$

Claim: $(x-5)(x-2) = x^2 - 7x + 10$

Why?
$$(x-5)(x-2) = x^2 - 2x - 5x + 10$$
like terms

= x² - 7x + 10 Solve a quadratic equation by factoring is about going from the first form to the second form.

Wednesday, August 28, 2019 1248 PM

E.g. (a)
$$4x^2 - 2x = 0$$
 $2x(2x - 1) = 0$ (Factor out the common factor $2x$)

 $2x = 0$ on $2x - 1 = 0$ (Set each factor equal to 0)

 $2x = 0 \rightarrow x = 0$
 $2x - 1 = 0 \rightarrow 2x = 1 \rightarrow x = \frac{1}{2}$

Solution net: $\left\{0, \frac{1}{2}\right\}$

(b) $2x^1 + 7x = 4$
 $2x^2 + 7x - 4 = 0$ (Right hand nide = 0)

 $(2x - 1)(x + 4) = 0$ (Factor)

 $2x - 1 = 0$ on $x + 4 = 0$ (Sat each factor equal to zero)

 $x = \frac{1}{2}$ on $x = -4$

Solution net: $\left\{\frac{1}{2}, -4\right\}$

E.g. $2x^2 + x = 1$
 $2x^2 + x - 1 = 0$ (Right hand nide = 0)

 $(2x - 1)(x + 1) = 0$ (Factor)

2x - 1 = 0 on x + 1 = 0

$$x = \frac{1}{2} \quad \text{or} \quad x = -1$$

Solution set :
$$\left\{\frac{1}{2}, -1\right\}$$

Obj 2: Solve quadratic equations by the repare root property.

E.g.
$$x^2 = 4 \rightarrow x = \pm 2$$

Square Root Property.

We can write this in an equivalent way as:

Mote: Before you can apply the square root property, a squared expression must be isolated on one side of the equation.

E.g. (a)
$$3x^2 - 15 = 0$$

$$-3x^2 = 15 \rightarrow x^2 = 5$$
 [Invlate a squared expression on

$$- x = \pm \sqrt{5}$$
 Square root property one side)

Solution set: { 15, -15} $(b) 5x^2 + 45 = 0$ $\rightarrow 5x^2 = -45 \rightarrow x^2 = -9$ (Isolate x^2) $\rightarrow x = \pm \sqrt{-9}$ (Square Root Property) $\rightarrow x = \pm \sqrt{-1.9} = \pm \sqrt{i^2.9} \quad \text{(Recall that i^2 = -1)}$ imaginary unit) $\rightarrow x = \pm \sqrt{i^2} \cdot \sqrt{9}$ → x = ± i · 3 → x = ± 3i Solution set: {3i, -3i} By the Square Root Property: $x-2 = \pm \sqrt{6}$ = ± 16 +2 $\left(\text{on } x = 2 \pm \sqrt{6} \right)$ Solution set: { 2+16, 2-16} Obj 3: Solve quadratic equations by using the quadratic formula.

The quadratic farmula:

The solutions of a quadratic equation of the form $ax^{2} + bx + c = 0; a \neq 0 \text{ are given by the formula:}$ $x = -b \pm \sqrt{b^{2} - 4ac}$ 2a

E.g.
$$8x^2 + 2x - 1 = 0$$

 $a = 8$ $b = 2$ $c = -1$

Quadratic formula: $x = -2 \pm \sqrt{(2)^2 - 4 \cdot (8) \cdot (-1)}$ $2 \cdot (8)$ $-2 \pm \sqrt{36} = -2 \pm 6$ 16

$$x = \frac{-2+6}{16}$$
 on $x = \frac{-2-6}{16}$
 $x = \frac{4}{16} = \frac{1}{4}$ on $x = \frac{-8}{16} = -\frac{1}{2}$

Solution set: $\left\{\frac{1}{4}, -\frac{1}{2}\right\}$

E.g. Solve using the quadratic formula: $2x^2 + 2x - 1 = 0$

$$a = 2$$
 ; $b = 2$; $c = -1$

$$x = \frac{-2 \pm \sqrt{(2)^2 - 4 \cdot (2) \cdot (-1)}}{2 \cdot (2)}$$

$$= \frac{-2 \pm \sqrt{12}}{4} = \frac{-2 \pm \sqrt{4 \cdot 3}}{4} = \frac{-2 \pm \sqrt{4} \cdot \sqrt{3}}{4}$$

$$= \frac{-2 \pm 2\sqrt{3}}{4} = \frac{2(-1 \pm \sqrt{3})}{4}$$

$$x = \frac{-4 \pm \sqrt{3}}{2}$$

So Rution set:
$$\left\{\frac{-1+\sqrt{3}}{2}, \frac{-1-\sqrt{3}}{2}\right\}$$

$$a = 1$$
; $b = -2$; $c = 2$
 $x = -(-2) \pm \sqrt{(-2)^2 - 4 \cdot (1) \cdot (2)}$
 $2(1)$

$$\frac{2 \pm \sqrt{-4}}{2} = \frac{2 \pm \sqrt{i^2 \cdot 4}}{2}$$

$$= \frac{2 \pm i \cdot 2}{2} = \frac{2(1 \pm i)}{2} = 1 \pm i$$