Section 3.1. Quadratic Functions Tuesday, October 22, 2019 9:35 AM

Ob; 1: Characteristics of Panabolas.

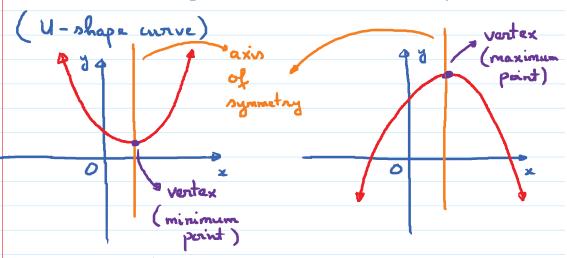
A quadratic function is a function of the form

where a, b, c are real numbers and a = 0

E.g.
$$f(x) = 2x^2 + 3x - 5$$
. (a=2, b=3, c=-5)

$$g(x) = -3x^2 + 4x - 7$$
. $(a=-3; b=4; c=-7)$

The graph of any quadratic function is a parabola



opens upward

opens downward

if a <0

Obj 2: Graph Quadratic Functions &(x) = ax2 + bx + c

* Vertex Formula.

Given a quadratic function $f(x) = ax^2 + bx + c$.

$$x_{\text{ventex}} = -\frac{b}{2a}$$
; $y_{\text{ventex}} = f\left(-\frac{b}{2a}\right)$

Note: To find y vertex, we plug the value of x vertex into the function.

E.g. Find the vertex of the parabola defined by the given function.

(a)
$$f(x) = 2x^2 - 8x + 3$$

(b)
$$f(x) = -x^2 - 2x + 8$$

Solution:

$$x_{\text{ventex}} = -\frac{b}{2a} = -\frac{(-8)}{2(2)} = 2$$

(b)
$$a = -1$$
, $b = -2$, $c = 8$

$$x_{vantex} = -\frac{b}{2a} = -\frac{(-2)}{2(-1)} = -1$$
 $x_{vantex} = -(-1)^2 - 2(-1) + 8 = 9$

* Process to graph a quadratic function

$$f(x) = ax^2 + bx + c$$

Step 1: Determine whether the parabula opens up on opens down.

a >0 → opens up ; a <0 → opens down.

Step 2: Find the vertex.

Ventex:
$$\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$$

Step 3: Find the axis of symmetry.

$$X = -\frac{b}{2a}$$

Step 4: Find the y-intercept.

Set x = 0 in the function f(x) = ax2 + bx + c.

We obtain c.

So, the y-intercept in (0, c)

We can reflect the y-intercept across the axis of symmetry to got an additional point.

Step 5: Find the x - intercept (s)

Set f(x) = 0. We have a quadratic equation $ax^2 + bx + c = 0$

The solutions (if real) are the x-coordinates

of the x-intercepts.

Step 6: Generate additional points if necessary
by using a T-table * * * *

E.g. Graph $f(x) = x^2 - 2x - 3$.

Step 1: a = 1 >0. Parabola opens up.

Step 2: $x_{vartex} = -\frac{(-2)}{2(1)} = 1$ $y_{vartex} = (1)^2 - 2(1) - 3 = -4$ $y_{vartex} = (1)^2 - 2(1) - 3 = -4$

Step 3: Ventical line x = 1

Step 4: y-intercept: (0,c) = (0,-3)

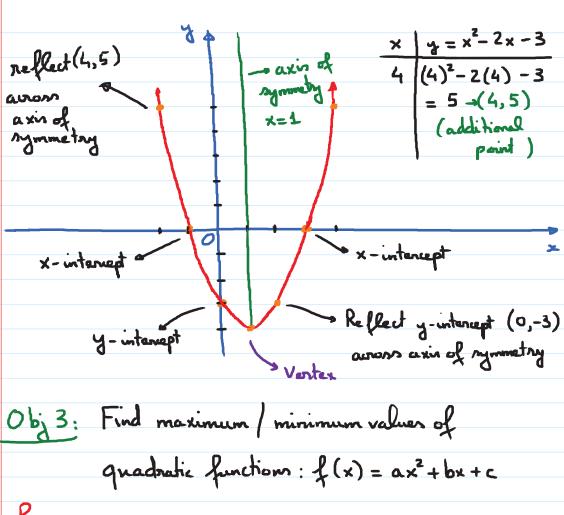
Step 5: x-intercepts: $x^2 - 2x - 3 = 0$

(x+1)(x-3)=0

x+1=0 ; x-3=0

 $x = -1 \qquad \qquad x = 3$

x-intercepts: (-1,0); (3,0)



Process:

If a >0, & has a minimum point.

The minimum value = y vertex and it occurs when

x = x ventex

If a <0, & has a maximum point.

The maximum value = yvertex and it occurs when

X = X vertex

E.g. Given $f(x) = -3x^2 + 6x - 13$.

Q1: Determine whether of has a maximum or a minimum value.

Q2: Find the max / min value and determine where it occurs.

Q3: Find the domain and range of this function.

Solution:

Q1: Since a = -3 <0, panabola opens down.

So, of has a maximum value.

Q2: Find vertex:

 $x_{vantex} = -\frac{b}{2a} = -\frac{6}{2(-3)} = 1$

y vertex = -3(1)2 + 6(1) - 13 = -10.

Conclusion: Maximum value = -10

and it occurs when se = 1.

Q3: Domain of f = (-00,00)

(Reason: function has no denominator with x or square noot with x)

Range = (-00, -10]

Mote: If a > 0, then the range of $f(x) = ax^2 + bx + c \text{ is } : [y \text{ vertex }, \infty)$

If a <0, then the range of $f(x) = a x^2 + bx + c \text{ is } : (-\infty, y \text{ vertex})$