
1.3. Trigo nometric Functions Wednesday, January 22, 2020 9:45 AM

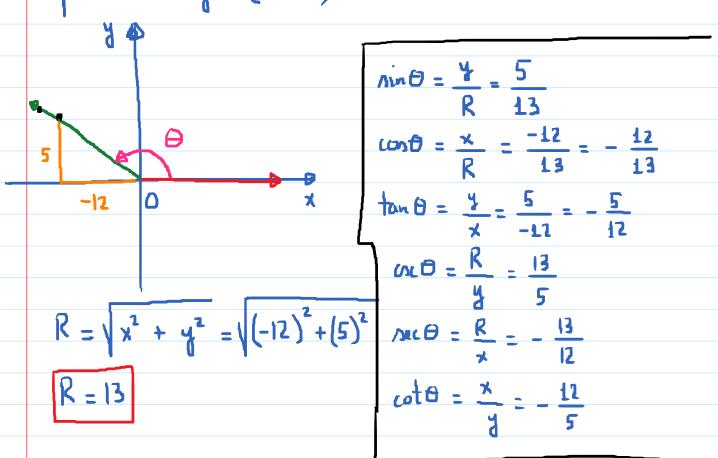
O: angle in standard position.

P(x,y) is any point on terminal ride

R: distance from 0 to P

Pythagonean Theorem:

$$x^{2} + y^{2} = R^{2}$$
 $R = \sqrt{x^{2} + y^{2}}$; $R > 0$

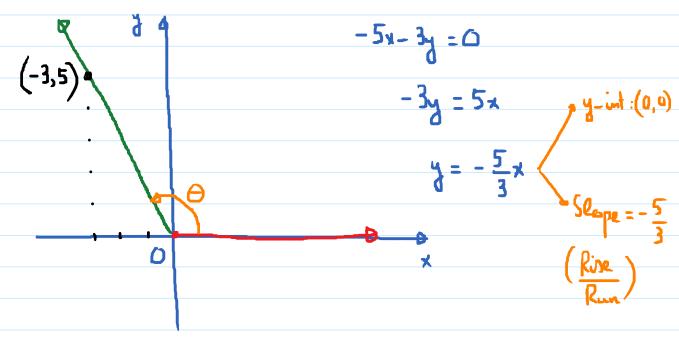

Definition of the 6 banic trigonometric functions:

Nin
$$\Theta = \frac{4}{8}$$
; con $\Theta = \frac{x}{8}$; ten $\Theta = \frac{4}{8}$ (x \(\text{\$\pi\$} \))

(nine of theta) R (conine of theta) R (tangent of x

$$(y \neq 0)$$
 $(x \neq 0)$ $(x \neq 0)$ $(x \neq 0)$ $(x \neq 0)$

E.g.1. The terminal ride of an angle θ in standard paintion passes through (-12, 5). Find $\sin\theta$, $\cos\theta$,...

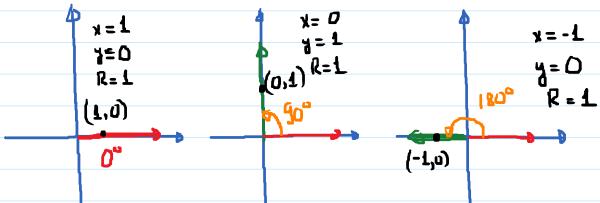


Note: We can pick any point on the terminal ride of the angle and obtain the name result for the values of the 6 trigo nometric function.

E.g. Criven: Equation of the terminal make of an angle of

in Atandard position in -5x-3y=0; $x \le 0$.

Shatch the terminal mole of O. Find sin O, and,


$$R = \sqrt{x^2 + y^2} = \sqrt{9 + 25} = \sqrt{34}$$

$$Ain\theta = \frac{4}{R} = \frac{5}{\sqrt{34}} \cdot \frac{\sqrt{34}}{\sqrt{34}} = \frac{5\sqrt{34}}{34} ; \quad \text{(A)} \theta = \frac{\sqrt{34}}{5}$$

$$\tan \theta = \frac{1}{R} = -\frac{3}{\sqrt{34}} = -\frac{3\sqrt{34}}{34}$$
; $\sec \theta = -\frac{\sqrt{34}}{3}$

$$tan\theta = \frac{4}{x} = -\frac{5}{3}$$
; $cot\theta = -\frac{3}{5}$

Trigonometric function values of the quadrantal angles

$$x = 0$$

170°
 $y = -1$
 $(0,-1)$
 $R = 1$

1	e \	Vina	ων Ω	tone	CVr	∧ec⊖	(ate
	O°	۵	1	D	undefined	1	undefined
Q	do	4	D	undefined	1	undefied	٥
-	Bo	D	-1	0	unlegicad	-1	undefind
2	70°	-1	D	undafisd	-1	undefind	0
			1				

csc 90° = 1; cot 180° : underfined

Wednesday, January 22, 2020 10:27 AM Note: Coteminal angles have the same trigonometric function E. (a) cot 540° = cot 180° = undefined (540 - 1800 + 3600 no 5400 is esterminel with 1800) (h) tan 1800° = tan 0° = 0 (1800° = 0° + 5.360° . So 1800° is cotenminal with 0°) $E.g. + an0^{\circ} - 6. \sin 90^{\circ} = 0 - 6.1 = -6$ Mate: $\sin \theta = (\sin \theta)^2$, $\cos^3 \theta = (\cos \theta)^2$ $\frac{1}{2020}\theta = \left(\frac{1}{100}\right)^{2020}$

$$\frac{E_{-1}}{\cos^{2}(180^{\circ})} = (-1)^{2020} = (-1)^{2021}$$

$$\cos^{2021}(180^{\circ}) = (-1)^{2021} = (-1)$$

$$\frac{\text{E.g.}}{(\omega \wedge (-180^{\circ}))^{2}} + \frac{(\omega^{2}(-180^{\circ}))^{2}}{(\wedge in(-180^{\circ}))^{2}} = 1 + 0 = 1.$$

$$(\omega \wedge (-180^{\circ}))^{2} + (\wedge in(-180^{\circ}))^{2}$$

$$(-1)^{2} + (0)^{2}$$