Section 2.7. Inverse Functions Obj 1: Varify Inverse Functions Recall: If f and g are function, then -f (g(x)) means you plug g(x) into f g (f(x)) means you plug f(x) into g. If after you rimplify, both of these expressions equal to x, then I and g are inverse functions of each other. Definition of the inverse of a function: Given a function f. If g is a function such that f(g(x)) = x and g(f(x)) = xthen the function g is the inverse of the function f. We denote the inverse of the function of by f (read as f inverse) E.g. Verify Inverse Functions. Given f(x) = 3x + 2; $g(x) = \frac{x-2}{3}$ Q: Verify that each function is the inverse of the other.

Thursday, October 10, 2019 9:45 AM

$$\begin{array}{c}
f(g(x)) = f(\frac{x-2}{3}) = 3 \cdot \left(\frac{x-2}{3}\right) + 2 \\
= \frac{2(x-2)}{3} + 2 = x - 2 + 2 = x \\
G_{0}, f(g(x)) = x \\
g(f(x)) = g(3x+2) = \frac{(3x+x)}{3} \\
= \frac{5x}{3} = x \\
G_{0}, f and g are inverse functions of each other. \\
Note: f(x) = 3x + 2 \\
g(x) = \frac{x}{3} \\
\frac{x}{2} \\
\frac{f(x)}{2} \\
\frac{f(x)}{$$

Thereby, Occober 10, 2019
E.g. (Fiven
$$f(x) = \frac{2}{x-5}$$
; $g(x) = \frac{2}{x} + 5$
Verify that each function in the inverse of the other.
Sol:
 $f(g(x)) = f(\frac{2}{x}+5) = \frac{2}{(\frac{2}{x}+5)} + 5$
 $= \frac{2}{\frac{2}{x}} = \frac{2}{\frac{2}{x}} = \frac{2}{\frac{1}{x}} + \frac{x}{2} = \frac{2x}{x} = x$
 $g(f(x)) = g(\frac{2}{x-5}) = \frac{2}{(\frac{2}{x-5})}$
 $= \frac{2}{\frac{1}{x}} + \frac{x-5}{2} + 5$
 $= \frac{Z(x-5)}{2} + 5 = x-5 + 5 = x$
Obj 2: Find the inverse of a function.
E.g. Find the inverse of $f(x) = 2x + 7$
Process:
Step 1: Replace the notation $f(x)$ with y
 $y = 2x + 7$
Step 2: Interchange x and y in the above equation
 $x = 2y + 7$

Thursday, October 10, 2019 10:09 AM

Step 3: Solve for y by itself in the equation in Step 2

$$x = 2y + 7$$

 $x - 7 = 2y$ (Subtract 7 from both rides)
 $\frac{x-7}{2} = y$ (Divide both rides by 2)
 $y = \frac{x-7}{2}$
Step 4: Replace y by the notation $f^{-1}(x)$
 $f^{-1}(x) = \frac{x-7}{2}$ Answer. This in the
inverse function of
 f .
E.g. Find the inverse of $f(x) = 4x^3 - 1$.
Step 1: Replace $f(x)$ by y
 $y = 4x^3 - 1$
Step 2: Interchange x and y
 $x = 4y^3 - 1$
Step 3: Solve for y by itself.
 $x + 1 = 4y^3$
 $\frac{x + 1}{4} = y^3$
 $y = \sqrt[3]{\frac{x + 1}{4}}$

Thursday, October 10, 2019 10:18 AM

Step 4: Replace y with
$$f^{\pm}(x)$$

 $f^{\pm}(x) = \sqrt[3]{\frac{x+1}{4}}$ - Annuen
E.g. Find the inverse of $f(x) = \frac{5}{7x-1}$
Step 1: Replace $f(x)$ with y
 $y = \frac{5}{7x-1}$
Step 2: Interchange x and y
 $x = \frac{5}{7y-1}$
Step 3: Solve for y by itself
Multiply bith inder by the denominator:
 $x(7y-1) = \frac{5}{(7y-1)}$
 $x(7y-1) = 5$
 $7xy - x = 5$
 $7xy = 5 + x$
 $y = \frac{5+x}{7x}$
Step 4: Replace y by $f^{\pm}(x)$

Thursday, October 10, 2019 10:26 AM

Obj 3: The Horizontal line Test and One-to-one functions Note: Not all functions have inverse functions. Only one - to - one functions have inverse functions. E.g. -1 1 Ł -2 -Z 4 2 8 2 0 0 0 This in NOT a one - to - one This is a one-to-one function function To be a function: each x has only one y. To be a one-to-one function: it needs to be a function first and each y has only one x. Horizontal line Test A function is one-to-one; hence, has an inverse if there is NO horizontal line that intensects the graph at more than one point.

