4/3/2020

PRACTICE 3

Stı Da	udent: ite:	- Course: College Algebra	Test 3 covers 3.1, 3.2, 3.3, 3.4 and 3.5				
1.	In the following exercise, find the coordinates of the vertex for the parabola defined by the given quadratic function.						
	$f(x) = 3x^2 + 6x + 9$						
	The vertex is	(Type an ordered pair.)					
2.	Consider the function $f(x) = 3x^2$	– 18x – 1.					
_	 a. Determine, without graphing, whether the function has a minimum value or a maximum value. b. Find the minimum or maximum value and determine where it occurs. c. Identify the function's domain and its range. 						
	a . The function has a (1)	value.					
	b. The minimum/maximum va	ue is It occurs at x =	·				
	c. The domain of f is	. (Type your answer in interval nota	ation.)				
	The range of f is (Type your answer in interval notation.)						
	(1) O maximum O minimum						
3.	Consider the function $f(x) = -3x^2 + 18x - 9$.						
_	.	ng, whether the function has a minimum va mum value and determine where it occurs ain and its range.					
	a. The function has a (1)	value.					
	b. The minimum/maximum valu	ue is It occurs at x =					
	c. The domain of f is	. (Type your answer in interval nota	tion.)				
	The range of f is	. (Type your answer in interval notation.)				
	(1) 🔿 maximum 🔿 minimum						

4. Fill in each blank so that the resulting statement is true.

Consider the quadratic function $f(x) = ax^2 + bx + c$, $a \neq 0$. If a > 0, then f has a minimum that occurs at x =_____. This minimum value is ______. If a < 0, then f has a maximum that occurs at x =_____. This maximum value is ______.

Consider the quadratic function $f(x) = ax^2 + bx + c$, $a \neq 0$. If a > 0, then f has a minimum that occurs at

x = (1) _____ This minimum value is (2) _____ If a < 0, then f has a maximum that occurs at

x = (3) _____ This maximum value is (4) _____

5. Determine whether the function is a polynomial function. If it is, identify the degree.

 $f(x) = 3x^6 + 5x^7$

Choose the correct choice below and, if necessary, fill in the answer box to complete your choice.

○ A. It is a polynomial. The degree of the polynomial is .

- B. It is not a polynomial.
- 6. Use the leading coefficient test to determine the end behavior of the graph of the given polynomial function.

 $f(x) = 6x^7 - 2x^6 + 2x + 5$

- A. Falls left & rises right.
- O B. Rises left & rises right.
- C. Falls left & falls right.
- D. Rises left & falls right.
- C E. None of the above.

7. Find the zeros for the polynomial function and give the multiplicity for each zero. State whether the graph crosses the x-axis or touches the x-axis and turns around at each zero.

 $f(x) = -7(x-3)(x-4)^2$

Determine the zero(s).

The zero(s) is/are

(Type integers or decimals. Use a comma to separate answers as needed.)

Determine the multiplicities of the zero(s). Select the correct choice below and, if necessary, fill in the answer box(es) within your choice.

- A. There are two zeros. The multiplicity of the smallest zero is ______. The multiplicity of the largest zero is ______.
 (Simplify your answers.)
- B. There is one zero. The multiplicity of the zero is _____.
 (Simplify your answer.)
- C. There are three zeros. The multiplicity of the smallest zero is ______. The multiplicity of the largest zero is ______. The multiplicity of the other zero is ______. (Simplify your answers.)

Determine the behavior of the function at each zero. Select the correct choice below and, if necessary, fill in the answer boxes within your choice.

○ A. The graph crosses the x-axis at x = _____ and touches the x-axis and turns around at x = _____

(Simplify your answers. Type integers or decimals. Use a comma to separate answers as needed.)

- O B. The graph crosses the x-axis at all zeros.
- C. The graph touches the x-axis and turns around at all zeros.

8. Use the given function to complete parts (a) through (e) below.

 $f(x) = x^4 - 9x^2$

a) Use the Leading Coefficient Test to determine the graph's end behavior.

- A. The graph of f(x) falls left and rises right.
- B. The graph of f(x) falls left and falls right.
- \bigcirc **C**. The graph of f(x) rises left and falls right.
- \bigcirc **D**. The graph of f(x) rises left and rises right.

b) Find the x-intercepts.

x =

(Type an integer or a decimal. Use a comma to separate answers as needed.)

At which zeros does the graph of the function cross the x-axis? Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

 \bigcirc A. x =______ (Type an integer or a decimal. Use a comma to separate answers as needed.)

O B. There are no x-intercepts at which the graph crosses the x-axis.

At which zeros does the graph of the function touch the x-axis and turn around? Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

 \bigcirc A. x =______ (Type an integer or a decimal. Use a comma to separate answers as needed.)

O B. There are no x-intercepts at which the graph touches the x-axis and turns around.

c) Find the y-intercept by computing f(0).

f(0) =

d) Determine the symmetry of the graph.

- Odd; origin symmetry
- Even; y-axis symmetry
- Neither

e) Determine the graph of the function.

9. Fill in the blank so that the resulting statement is true.

To divide $x^3 + 5x^2 - 4x + 1$ by x – 3 using synthetic division, the first step is to write

To divide $x^3 + 5x^2 - 4x + 1$ by x - 3 using synthetic division, the first step is to write

10. Divide using synthetic division.

$$(x^3 + 9x^2 - 4x + 8) \div (x - 5)$$

_____·

(Simplify your answers. Do not factor. Use integers or fractions for any numbers in the expressions.)

11. Divide using synthetic division.

$$\frac{x^5 + 3x^3 - 4}{x - 1}$$

$$\frac{x^5 + 3x^3 - 4}{x - 1} = \underline{\qquad} + \underline{\qquad} + \underline{\qquad} + \underline{\qquad}$$
(Simplify your answers. Do not factor.)

12. Use synthetic division and the remainder theorem to find the indicated function value.

$$f(x) = 4x^3 - 2x^2 - 5x + 5; \ f(-4)$$

f(-4) =

13. Fill in the blanks so that the resulting statement is true.

Consider solving $4x^3 + 23x^2 - 7x - 6 = 0$. The synthetic division shown below indicates that (1) ______ is a root.

Based on the synthetic division, $4x^3 + 23x^2 - 7x - 6 = 0$ can be written in factored form as (2)

(1)
$$\bigcirc -6$$

 $\bigcirc 6$
(2) $\bigcirc (x+6)(4x^2-x-1) = 0.$
 $\bigcirc (x-6)(4x^2+x+1) = 0.$
 $\bigcirc (x+6)(4x^2+x-1) = 0.$
 $\bigcirc (x-6)(4x^2-x-1) = 0.$
 $\bigcirc (x-6)(4x^2-x-1) = 0.$

14. Use the Rational Zero Theorem to list all possible rational zeros for the given function.

 $f(x) = 4x^4 - x^3 + 3x^2 - 2x - 22$

Which of the following is the complete list of possible zeros of the given function?

• A.

$$\pm 1, \pm 2, \pm 11, \pm \frac{1}{2}, \pm \frac{11}{2}$$

• B.
 $\pm 1, \pm 2, \pm 11, \pm 22, \pm \frac{1}{2}, \pm \frac{11}{2}, \pm \frac{1}{4}, \pm \frac{11}{4}$
• C.
 $\pm 1, \pm 2, \pm \frac{11}{2}, \pm \frac{1}{4}, \pm \frac{11}{4}$

- D. The function has no rational zeros.
- *15. Find a polynomial function of degree 3 with real coefficients that has the given zeros.
 - -1,2,-4

The polynomial function is $f(x) = x^3 + x^2 - 6x - 8$.

*16. The polynomial function f(x) has the given zero. Find the other zeros.

$$f(x) = x^3 + 4x^2 - 6x - 24; -4$$

The other zeros are

(Type exact answers, using radicals as needed. Use a comma to separate answers as needed.)

17. Find the domain of the following rational function.

$$H(x) = \frac{-9x^2}{(x-8)(x+6)}$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

- O A. The domain of H(x) is {x|x ≠ _____}. (Type an integer or a fraction. Use a comma to separate answers as needed.)
- \bigcirc **B.** The domain of H(x) has no restrictions.

18. Find the vertical asymptotes, if any, and the values of x corresponding to holes, if any, of the graph of the rational function.

$$f(x) = \frac{x - 8}{x^2 - 13x + 40}$$

Select the correct choice below and, if necessary, fill in the answer box(es) to complete your choice. (Type an integer or a fraction. Use a comma to separate answers as needed.)

○ A. Vertical asymptote(s) at x = _____ and hole(s) at x = _____

○ B. Vertical asymptote(s) at x =

 \bigcirc **C**. Hole(s) at x =

D. There are no discontinuities.

19. Find the horizontal asymptote, if any, of the graph of the rational function.

$$g(x) = \frac{10x^2}{5x^2 + 4}$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

○ A. The horizontal asymptote is . (Type an equation.)

B. There is no horizontal asymptote.

20. Find the horizontal asymptote, if any, of the graph of the rational function.

$$h(x) = \frac{14x^3}{7x^2 + 6}$$

Select the correct choice below and, if necessary, fill in the answer box to complete your choice.

○ A. The horizontal asymptote is . (Type an equation.)

B. There is no horizontal asymptote.

1. (-1,6)	
-----------	--

2. (1) minimum

- 28 3 (- ∞,∞) [- 28,∞)

3. (1) maximum

18
3
$(-\infty,\infty)$

(−∞,18]

^{4.} (1)
$$-\frac{b}{2a}$$
.
(2) $f\left(-\frac{b}{2a}\right)$.
(3) $-\frac{b}{2a}$.
(4) $f\left(-\frac{b}{2a}\right)$.

5. A. It is a polynomial. The degree of the polynomial is **7**.

6. A. Falls left & rises right.

7.3,4

Α.

There are two zeros. The multiplicity of	the smallest zero	o is 1 . The multiplicity of the large	st zero is	
2. (Simplify your answers.)				
A. The graph crosses the x-axis at $x = $	3 a	and touches the x-axis and turns around at $x = $	4	

(Simplify your answers. Type integers or decimals. Use a comma to separate answers as needed.)

8. D. The graph of f(x) rises left and rises right.

- 3,3,0

A. x = -3,3 (Type an integer or a decimal. Use a comma to separate answers as needed.) A. x = 0 (Type an integer or a decimal. Use a comma to separate answers as needed.) 0

Even; y-axis symmetry

9. 3
1
5 - 4
1
10. $x^2 + 14x + 66$
338
11. $x^4 + x^3 + 4x^2 + 4x + 4$
0
12 263
13. (1) - 6
(2) $(x+6)(4x^2-x-1)=0.$
^{14.} B. $\pm 1, \pm 2, \pm 11, \pm 22, \pm \frac{1}{2}, \pm \frac{11}{2}, \pm \frac{1}{4}, \pm \frac{11}{4}$
15. 3
16. $\sqrt{6}$, - $\sqrt{6}$

17. A.

The domain of H(x) is {x x ≠ needed.)	8, - 6	}. (Type an integer or a fraction. Use a comma to separate answers as			
18. A. Vertical asymptote(s) at x = _	5	and hole(s) at x =8			
19. A. The horizontal asymptote is _	y = 2	(Type an equation.)			
20. B. There is no horizontal asymptote.					