1. First find f + g, f - g, fg and  $\frac{f}{g}$ . Then determine the domain for each function.

f(x) = 5x - 1, g(x) = x - 2

(f + g)(x) = \_\_\_\_\_ (Simplify your answer.)

What is the domain of f + g?

$$\begin{array}{c} \left(\frac{1}{2},\infty\right) \\ \left(-\infty,\frac{1}{2}\right) \cup \left(\frac{1}{2},\infty\right) \\ \left(-\infty,\infty\right) \\ \end{array}$$

(f - g)(x) = (Simplify your answer.)

What is the domain of f - g?

 $\begin{pmatrix} -\infty, -\frac{1}{4} \end{pmatrix} \cup \left( -\frac{1}{4}, \infty \right)$  $(-\infty, \infty)$  $(0, \infty)$  $(-\frac{1}{4}, \infty)$ 

(fg)(x) =

What is the domain of fg?

$$(-\infty,2)\cup(2,\infty)$$

$$(-\infty,\infty)$$

$$\left(-\infty,\frac{1}{5}\right)\cup\left(\frac{1}{5},\infty\right)$$

$$\left(\frac{f}{g}\right)(x) =$$
What is the domain of  $\frac{f}{g}$ ?
$$(-\infty,\infty)$$

- (0,∞)
- $\bigcirc$  (-∞,2)U(2,∞)
- (2,∞)

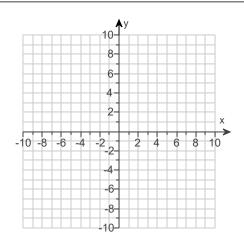
2. The function f(x) = 9x + 5 is one-to-one.

Find an equation for  $f^{-1}(x)$ , the inverse function.

 $f^{-1}(x) =$ 

(Type an expression for the inverse. Use integers or fractions for any numbers in the expression.)

3. Select the correct choice that completes the sentence below.


The graph of y = -f(x) is the graph of y = f(x) reflected about the (1)\_\_\_\_\_

- (1) 🔘 x-axis.
  - 🔘 y-axis.
- 4. Use transformations of the graph of  $f(x) = x^3$  to determine the graph of the given function.
  - $g(x) = (x+4)^3$

Select all the transformations that are needed to graph the given function using  $f(x) = x^3$ .

- **A.** Stretch the graph horizontally by a factor of 4.
- **B.** Shift the graph 4 units to the right.
- C. Shift the graph 4 units up.
- **D.** Stretch the graph vertically by a factor of 4.
- **E.** Shift the graph 4 units to the left.
- **F.** Shift the graph 4 units down.
- **G.** Shrink the graph horizontally by a factor of 4.
- **H.** Reflect the graph about the y-axis.
- I. Shrink the graph vertically by a factor of 4.
- **J.** Reflect the graph about the x-axis.

Use the graphing tool to graph the function.



5. Find f(g(x)) and g(f(x)) and determine whether the pair of functions f and g are inverses of each other.

$$f(x) = 8x + 4 \text{ and } g(x) = \frac{x - 4}{8}$$
$$f(g(x)) = \underline{\qquad} \text{ (Simplify your answer.)}$$

a.

c.

**b.** g(f(x)) = (Simplify your answer.)

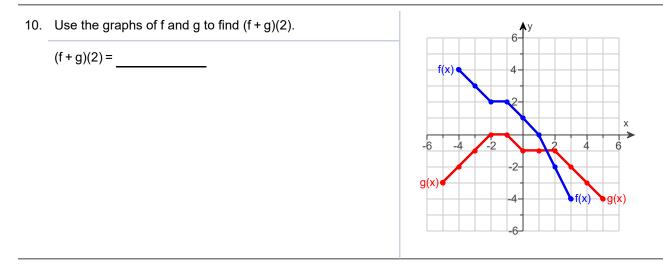
f and g are inverses of each other.

f and g are not inverses of each other.

|    | If the function g is the inverse of the function f, then $f(g(x)) =$                              | (1) and g                   | g(f(x)) = (2)  |
|----|---------------------------------------------------------------------------------------------------|-----------------------------|----------------|
|    | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                            |                             |                |
| 7. | Fill in the blanks.                                                                               |                             |                |
|    | The function $(g \circ f)(x)$ is found by replacing each occurrence                               | of x in the equation for    | with           |
|    | The function $(g \circ f)(x)$ is found by replacing each occurrence                               | of x in the equation for (1 | ) with         |
|    | (2)                                                                                               |                             |                |
|    | (1) $\bigcirc$ g (2) $\bigcirc$ f(x).<br>$\bigcirc$ f $\bigcirc$ g(f).                            |                             |                |
|    | $ \begin{array}{c c} & g(f) & \bigcirc & g(x). \\ & \bigcirc & f(g) & \bigcirc & x. \end{array} $ |                             |                |
|    |                                                                                                   | 1                           |                |
| 8. | Use the graph of $y = f(x)$ to graph the function $g(x) = f(x) - 4$ .                             | Choose the correct grap     | oh of g below. |
|    | y = f(x)                                                                                          | ○ A.                        | ○ В.           |
|    |                                                                                                   |                             |                |
|    |                                                                                                   | <u>○</u> c.                 | ○ D.           |
|    |                                                                                                   | -8                          |                |

9. Find f(g(x)) and g(f(x)) and determine whether the pair of functions f and g are inverses of each other.

$$f(x) = 7x - 2$$
 and  $g(x) = \frac{x + 7}{2}$ 


**a.** f(g(x)) =

(Simplify your answer. Use integers or fractions for any numbers in the expression.)

**b.** g(f(x)) =

(Simplify your answer. Use integers or fractions for any numbers in the expression.)

- **c.** O f and g are not inverses of each other.
  - f and g are inverses of each other.



- 11. For f(x) = 5x 1 and  $g(x) = 5x^2 4$ , find the following functions.
  - **a.**  $(f \circ g)(x)$ ; **b.**  $(g \circ f)(x)$ ; **c.**  $(f \circ g)(0)$ ; **d.**  $(g \circ f)(0)$
  - **a.**  $(f \circ g)(x) =$  (Simplify your answer.)
  - **b.**  $(g \circ f)(x) =$  (Simplify your answer.)
  - **c.**  $(f \circ g)(0) =$  (Simplify your answer.)
  - **d.**  $(g \circ f)(0) =$  (Simplify your answer.)

<sup>12.</sup> Use transformations of  $f(x) = x^2$  to graph the following function.

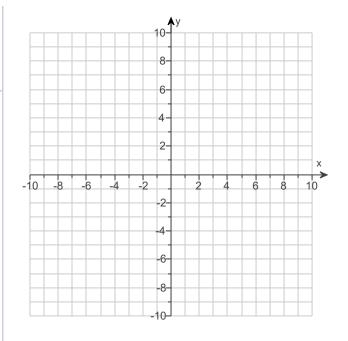
 $g(x) = x^2 + 5$ 

Select all the transformations that are needed to graph the given function using  $f(x) = x^2$ .

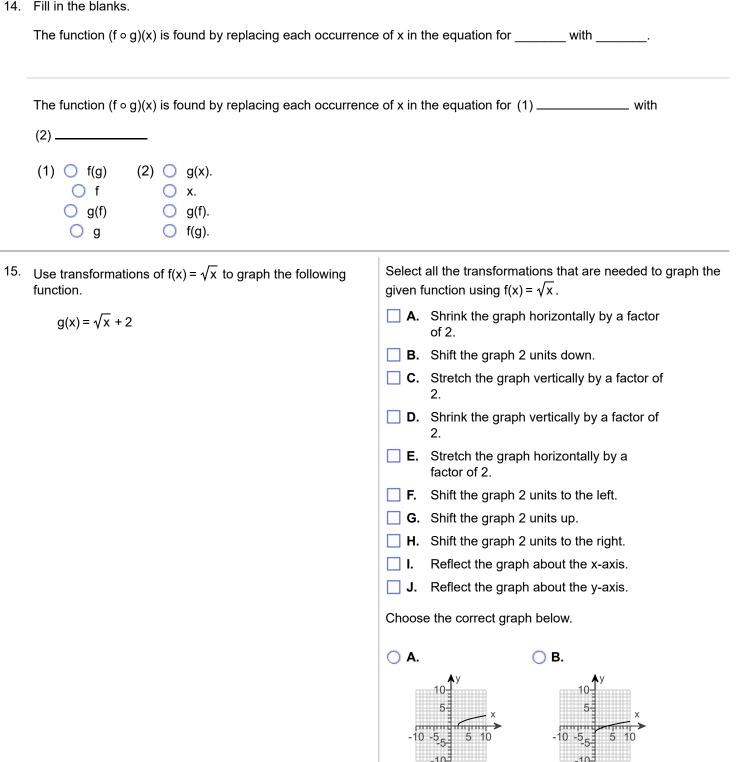
- A. Stretch the graph horizontally by a factor of 5.
- **B.** Reflect the graph about the y-axis.
- **C.** Shift the graph 5 units to the right.
- **D.** Stretch the graph vertically by a factor of 5.
- **E.** Shrink the graph vertically by a factor of 5.
- **F.** Reflect the graph about the x-axis.
- **G.** Shift the graph 5 units down.
- **H.** Shift the graph 5 units to the left.
- □ I. Shrink the graph horizontally by a factor of 5.
- **J.** Shift the graph 5 units up.

Use the graphing tool to graph the function.

13. For f(x) = 6x and g(x) = x + 7, find the following functions.

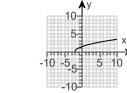

**a.**  $(f \circ g)(x)$ ; **b.**  $(g \circ f)(x)$ ; **c.**  $(f \circ g)(2)$ ; **d.**  $(g \circ f)(2)$ 

**a.** (f ∘ g)(x) = (Simplify your answer.)


**b.**  $(g \circ f)(x) =$ (Simplify your answer.)

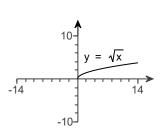
**c.** (f o g)(2) =

**d.** (g ∘ f)(2) = \_\_\_\_\_




14. Fill in the blanks.

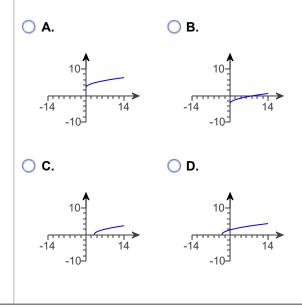



O C.

O D.



16. Graph the function using the techniques of shifting, compressing, stretching, and/or reflecting. Start with the graph of the basic function shown below.


$$h(x) = \sqrt{x+3}$$



Select all the transformations that are needed to graph the given function using  $y = \sqrt{x}$ .

- A. Stretch the graph vertically by a factor of 3.
- **B.** Shift the graph 3 units up.
- **C.** Reflect the graph about the y-axis.
- **D.** Stretch the graph horizontally by a factor of 3.
- **E.** Shift the graph 3 units to the right.
- **F.** Shrink the graph horizontally by a factor of 3.
- **G.** Shrink the graph vertically by a factor of 3.
- **H.** Shift the graph 3 units down.
- **I.** Reflect the graph about the x-axis.
- **J.** Shift the graph 3 units to the left.

Choose the correct graph below.



<sup>17.</sup> Use transformations of  $f(x) = x^2$  to graph the following function.

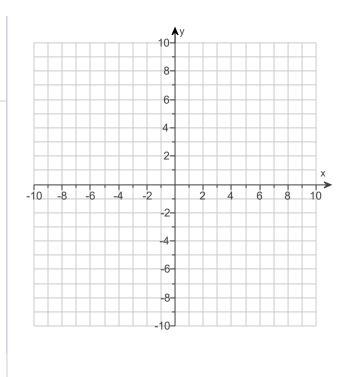
 $h(x) = (x+4)^2 + 3$ 

Select all the transformations that are needed to graph the given function using  $f(x) = x^2$ .

- **A.** Shrink the graph horizontally by a factor of 3.
- **B.** Shift the graph 4 units to the right.
- **C.** Shift the graph 3 units down.
- **D.** Shrink the graph vertically by a factor of 4.
- **E.** Shift the graph 4 units to the left.
- **F.** Reflect the graph about the y-axis.
- **G.** Reflect the graph about the x-axis.
- **H.** Shift the graph 3 units up.
- I. Stretch the graph vertically by a factor of 4.
- **J.** Stretch the graph horizontally by a factor of 3.

Use the graphing tool to graph the function.

18. For f(x) = 5x - 1 and  $g(x) = \frac{x + 1}{5}$ , find the following functions.


**a.**  $(f \circ g)(x)$ ; **b.**  $(g \circ f)(x)$ ; **c.**  $(f \circ g)(9)$ ; **d.**  $(g \circ f)(9)$ 

**a.** (f ∘ g)(x) = (Simplify your answer.)

**b.**  $(g \circ f)(x) =$ (Simplify your answer.)

**c.** (f o g)(9) = \_\_\_\_\_

**d.** (g ∘ f)(9) =

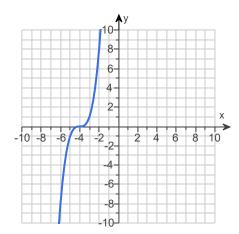


#### 19. Complete the sentence below.

| Suppose that the gr | aph of a function g is known. 1 | Γhe graph of y = g(x) + 2 may b | e obtained by a | shift of the |
|---------------------|---------------------------------|---------------------------------|-----------------|--------------|
| graph of g          | a distance of 2 units.          |                                 |                 |              |

| shill of the graph of g            | (2) a distance of                                                                     | of 2 units. |
|------------------------------------|---------------------------------------------------------------------------------------|-------------|
| (1) O horizontal<br>O vertical     | <ul> <li>(2) O down</li> <li>to the left</li> <li>to the right</li> <li>up</li> </ul> |             |
| 0. Does the graph repres function? | sent a function that has an invers                                                    | se y x      |

🔘 No

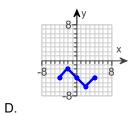

O Yes

| 1. 6x – 3          |
|--------------------|
| $(-\infty,\infty)$ |
| 4x + 1             |
| $(-\infty,\infty)$ |
| $5x^2 - 11x + 2$   |
| $(-\infty,\infty)$ |
| $\frac{5x-1}{x-2}$ |
| (−∞,2)∪(2,∞)       |

# $2. \ \frac{x-5}{9}$

## 3. (1) x-axis.

#### 4. E. Shift the graph 4 units to the left.




5. x

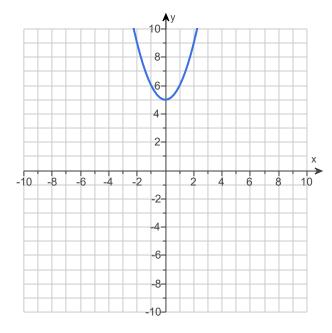
Х

| f and g are inverses | of each other. |
|----------------------|----------------|
|----------------------|----------------|

| 6. (1) x<br>(2) x.    |  |  |   |
|-----------------------|--|--|---|
| 7. (1) g<br>(2) f(x). |  |  | _ |



9. 7x + 45

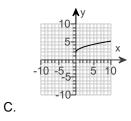

$$\frac{7x+5}{2}$$

f and g are not inverses of each other.

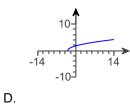
# 10. -3

 $11. \ 25x^2 - 21$  $125x^2 - 50x + 1$ - 211

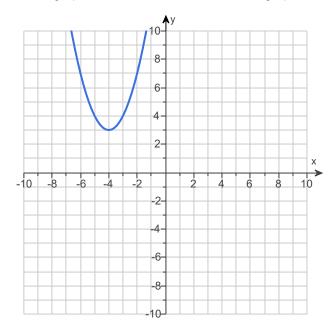
### 12. J. Shift the graph 5 units up.




| 13. 6x + 42 |  |  |  |
|-------------|--|--|--|
| 6x + 7      |  |  |  |
| 54          |  |  |  |
| 19          |  |  |  |
|             |  |  |  |


14. (1) f

(2) g(x).


15. G. Shift the graph 2 units up.



16. J. Shift the graph 3 units to the left.



17. E. Shift the graph 4 units to the left., H. Shift the graph 3 units up.



| 18. x            |  |  |  |
|------------------|--|--|--|
| x                |  |  |  |
| 9                |  |  |  |
| 9                |  |  |  |
|                  |  |  |  |
| 19. (1) vertical |  |  |  |
| (2) up           |  |  |  |
|                  |  |  |  |
| 20. No           |  |  |  |