^{1.} Express the given power series as a series with generic term x^{k} .

2. Use the annihilator method to determine the form of a particular solution for the given equation.

$$y'' + 17y' + 72y = e^{6x} - \sin x$$

Find a differential operator that will annihilate the nonhomogeneity $e^{6x} - \sin x$.

(Type the lowest-order annihilator that contains the minimum number of terms. Type your answer in factored or expanded form.)

What is the form of the particular solution?

$$y_p(x) =$$

3. Determine the first three nonzero terms in the Taylor polynomial approximation for the given initial value problem.

 $y' = sin y + 2 e^{5x}; y(0) = 0$

The Taylor approximation to three nonzero terms is $y(x) = + \cdots$.

4. Find a power series expansion about x = 0 for a general solution to the given differential equation. Your answer should include a general formula for the coefficients.

$$y' - 2xy = 0$$
$$y = a_0 \sum_{n=0}^{\infty} ($$

5. Find a differential operator that annihilates the given function.

$$e^{8x} - 16 e^{x}$$

A differential operator that annihilates $e^{8x} - 16e^{x}$ is

(Type the lowest-order annihilator that contains the minimum number of terms. Type your answer in factored or expanded form.)

6. Find a general solution for the given differential equation with x as the independent variable.

$$y^{(4)} + 6y^{\prime\prime} + 9y = 0$$

A general solution with x as the independent variable is y(x) =

7. Find a general solution for the given differential equation with x as the independent variable.

y''' - y'' - 24y' - 36y = 0

A general solution with x as the independent variable is y(x) =_____

8. Find the first four nonzero terms in a power series expansion about x = 0 for a general solution to the given differential equation.

$$(x^2 + 10)y'' + y = 0$$

y(x) =______+ ... (Type an expression in terms of a_0 and a_1 that includes all terms up to order 3.)

1. 12

 $(k-6)(k-8)a_{k-6}x^{k}$

^{2.}
$$(D-6)(D^2+1)$$

 $c_3 e^{6x} + c_4 \cos x + c_5 \sin x$

^{3.}
$$2x + 6x^2 + \frac{31}{3}x^3$$

 $\frac{4}{n!} \frac{x^{2n}}{n!}$

5. (D - 8)(D - 1)

6. $C_1 \cos \sqrt{3}x + C_2 x \cos \sqrt{3}x + C_3 \sin \sqrt{3}x + C_4 x \sin \sqrt{3}x$

7. $C_1 e^{-2x} + C_2 e^{6x} + C_3 e^{-3x}$

^{8.} $a_0 + a_1 x - \frac{1}{20} a_0 x^2 - \frac{1}{60} a_1 x^3$